
  

 

Abstract— More data fidelity terms in variational optical 
flow methods improve the estimation’s robustness. A robust 
and anisotropic smoother enhances the specific fill-in process.  
This work presents a combined local-global (CLG) approach 
with total variation regularization. The combination of 
bilateral filtering and anisotropic (image driven) regularization 
is used to control the propagation phenomena. The resulted 
method, CLG-TV, is able to compute larger displacements in a 
reasonable time. The numerical scheme is highly parallelizable 
and runs in real-time on current generation graphic processing 
units. 

I. INTRODUCTION 

 
OTION estimation plays an important role in 
computer vision applications. Two of the most known 

and simple to analyze methods were developed by K.P. 
Horn, B.G. Schunck in [1] and B. D. Lucas, T. Kanade in 
[2]. The Horn-Schunck (HS) model proposes a variational 
approach to optical flow estimation: 
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 (1). 

HSE  is the functional error to be minimized and ( , )r u v  is 

the residual between the images, defined below:  
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(2), 

where ( , )x x y
 , ( , )u u v

 and 
0u
 is an initial estimate. 

The terms of order higher than two are ignored. The above 
approximation is valid only for small values of the 
displacements u and v.  The optimal solution of HSE  is 

calculated using the Euler-Lagrange equations and a Jacobi 
(not mandatory) iterative scheme.  

Lucas-Kanade (LK) is a local method and assumes that 
small regions of pixels have the same flow. It is natural to 
consider a minimization procedure for the total error of that 
region: 2( , ) (· , )LK

region

E u v w r u v  , which is a least-square 

problem. Here, w represents the weighting factor. In order to 
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find the minimizers of LKE , the derivatives are set to zero. 

The resulting system is 2x2 with the following determinant: 
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 (3) 

The determinant can be singular or nearly singular if the 
image derivatives for the corresponding region are close to 
zero.  Where the determinant is non-singular, i.e. the pixel is 
a relatively strong feature, the method performs well. 

A new variational approach results after combining LK 
and HS: 
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  (4). 

The combination aims to improve the robustness of the HS 
model [3]. The main reason to do this is to enhance the flow 
accuracy for very large displacements. Such situations occur 
in traffic scenarios where the cars’ speeds can be high. On 
the other hand, the system camera(s) may move in the 
opposite direction and so the cars displacement in the images 
becomes even higher.  The integration of LK into HS model 
increases the number of the data fidelity terms and the effect 
is an improved behavior for large homogenous areas with 
large flows. 

The HS and CLG-HS models use the squared L2 norm 
and therefore they have some disadvantages like sensitivity 
to noise, over-propagation and the facts that they are not 
directionally selective and do not preserve motion 
boundaries. In order to significantly reduce these problems, 
a new variational model is proposed and a parallel numerical 
scheme is presented. The next section presents the new 
model and its minimization procedure.  

II. THE PROPOSED MODEL 

L1-norm is a better choice for modeling real problems 
involving discrete signals. Rudin, Osher and Fatemi 
originally suggested this and introduced the total variation in 
image processing domain [9]. L2-norm is easy to analyze 
mathematically, but is sensitive to outliers. L1-norm is 
robust in the presence of outliers, but is very difficult to 
analyze, especially in the case of functionals ([4],[9]). The 
Huber penalty function is also a good choice for a robust 
estimation.  
 In [6] an alternative to the HS model is proposed: 

1 ( , )· ( )TV LE r u v u v


     (5). (TV-L1 = total 

variation, L1).  As an observation, the data term is in L1 and 
the smoothness term represents the isotropic total variation. 
Since the functions composing the functional are not 
differentiable, the minimization is not trivial. The 
experiments reveal clearly more accurate results than HS. 
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The above functional is decomposed into three parts, in 
order to match the minimization scheme proposed in [4]:  
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While TV-1 is easily solved point-wise, the minimization of 
TV-u and TV-v is a difficult task. The last two functionals 
are under the Euler-Lagrange conditions, but the resulting 
system is highly nonlinear.  Their solution can be computed 
using the numerical scheme proposed in [4]. The solution 
was originally developed to solve a denoising problem and it 
is subject of convex optimization ([4],[10]). 

In order to increase the robustness of this model a local-
global combination is proposed: 
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 (9). 

As in CLG-HS, the idea is to use more data fidelity terms in 
order to increase the robustness.  The data terms are squared 
and the smoothness terms are not. Therefore, the model uses 
a robust regularization.  The main reason to keep the data 
fidelity terms squared is to keep the minimization scheme as 
simple as possible and to achieve real-time performance.   
 The CLG-TV model developed so far is isotropic, it 
propagates the flow in all directions, regardless of local 
properties. To enhance the propagation, an anisotropic 
diffusion filter is considered.  The effect of this filter is to 
reduce the propagation of the flow for image features 
(corners, edges) and to allow a higher “fill-in” effect for un-
textured areas. Obviously, the diffusion coefficient, called 
diffusion tensor, should depend on image derivatives.  
Perona and Malik [11] pioneered the idea of anisotropic 
diffusion and proposed two functions for the diffusion 
coefficient: 
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where the constant K controls the sensitivity to edges and is 
usually chosen experimentally. For a better control, the 
following diffusion tensor is used to alter the CLG-TV 

model: ·( ) ID eI
  . The altered model now reads: 
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  (10).  

The local window representing the data fidelity is another 
source of over-propagation. The pictures below illustrate this 
phenomenon.  In Fig.1 a), the local window is centered into 
the moving region.  In this case, the Lucas-Kanade method 
correctly computes the pixel’s flow. In Fig.1 b), the center of 
the window is placed into the static region, so the pixel has 
no motion. The top of the window is in the moving region.  
Since the method tries to match the moving part (beside the 
static one) of the window, the pixel appears to have a 

motion, which is not true. Traditional methods use a 
Gaussian filter to weight the importance of the pixels in the 
local window, but this is not satisfactory for all cases, 
including the scenario shown in Fig. 1. The most elegant 
method to avoid such a behavior is to use a bilateral filter. 
 

a)The  window  is  centered  in  the 
moving  region;  the  pixel’s  flow  is 
correctly determined 

b)The  window  is  centered  in  the 
static  region;  the  pixel’s  flow  is 
incorrectly determined 

Fig. 1.  Two effects of the local window 

 
The bilateral filter ([13], [14]) combines two types of 

filters: a Gaussian (space) filter and a range (color, intensity) 
filter. The weight of a pixel decreases as the distance from 
the center increases. In addition, the weight decreases if the 
intensity of the pixel is different from the center’s intensity.   
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(11), 

where
s

G denotes the spatial Gaussian filter and 
r

G

denotes the range (intensity) Gaussian filter. The product of 
these coefficients represents the weight for the pixel q of 
the region. The expression is then normalized in order to 
have a “fair” filter: the coefficients should sum to 1. Fig. 2 
shows the effect of the bilateral filtering. Fig.2 c) shows the 
range filter for a pixel situated at the border of two regions 
with different intensities.  Fig.2 d) shows the combined 
kernel. The pixels with the same intensity as the center 
weight more than the others.  The output in Fig.2 e) keeps 
the edge of the initial image Fig.2 a).  

The proposed CLG-TV model includes the bilateral 
weighting. Since the weights does not depend on the 
unknowns and for simplicity, the theoretical CLG-TV model 
is kept in the form (10). The CLG-TV functional error is 
decomposed into three parts:  
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where bfw  denotes the bilateral filter weight.  

For CLG-TV-1, u and v are considered fixed and ˆ ˆ,u v are 

the unknowns. Since the functional does not depend on 
image derivatives, a point-wise minimization is employed. 



  

Setting the derivatives to zero, the following linear system of 
equations results:  
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(15), where 
0 0 2 0 2: · ·x y

t w wI u vr I I   . The main determinant of 

(15) is always non-zero. 
For TV-u and TV-v, u and v are the unknowns. Their 
solutions are found adapting the algorithm presented in [4]. 
Since the problems are similar, the numerical schemes are 
expected to be similar.  The following steps leads to the 
desired numerical scheme: 
The Euler-Lagrange equation for TV-u is : 
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be the dual variable defined as: 
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The relation (16) is rewritten in the form: 
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(18). 

Substituting u in (17) and dividing by  results to: 

     ˆ ˆ· · / · · / 0u u up div D p u div D p u      
  

(19), 

which can be solved using a fixed-point iteration scheme: 
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 (20), where 
1

4
 

is the step width.  Setting 1D  , the numerical procedure 
match the one developed in [4]. The resulted numerical 
scheme is highly parallelizable. 

III. IMPLEMENTATION 

Since the approximation (2) is valid only for small 
displacements, a coarse-to-fine approach is employed. 
Beside large optical flow estimation, the coarse-to-fine 
approach improves the propagation from textured areas into 
weakly textured ones. For each level of the pyramid, a 
warping technique is used. For each warp the optical flow is 

computed using the equations (15), (18) and (20) in an 

iterative manner. The matrices ,u v , ,u vp p
 

are prolongated 

from each coarser level to the finer one. They are set to zero 
at the coarsest level. The next sequence depicts the pseudo-
code of the method: 
1) Set up pyramids 1 2,I I  and the their derivatives at each level 

2) Computes the diffusion tensor D for each level of the pyr. 1I . 

3) For each level starting with the coarsest (below, each referred 
variable is at the current level) 

a) If the coarsest level, then initialize ,u v , ,u vp p
 

 to zero. 

b) If not, upsample ,u v , ,u vp p
 

 from the previous level to 

the current level. 
c) for i = 1 to warps (Apply the warping technique) 

i) Apply a median filter to ,u v in order to avoid strong 

outliers. 
ii) Warp 

1 22 2, , , yxI I I I  using bilinear interpolation 

iii) For k=1 to eq_iterations 
A. Computes ˆ ˆ,u v using (15). This step includes 

the computations of the coefficients using the 
bilateral filter. 

1I  is used for the range 

gaussian. 
B. Update   ˆ· · uu div D p u 


)(18) 

C. Update ,u vp p
 

using (20) 

Typical values for the parameters are warps = 5, 
eq_iterations = 10. The pyramid factor is 0.5 and the 
number of levels depends on the image size. For 512x383 
images, the number of levels can be six. For the diffusion 

filter ·( ) ID eI
  , 5, 1/ 2    are very good 

values. The bilateral filter uses the first image 1I  to compute 

the range filter. In order to cope with large displacements, 
the implementation uses a 5x5 bilateral filter with 5 / 6s 
for the space gaussian and 0.1r  (image intensities are in 

[0,1] ) for the range gaussian. A 3x3 median filter is enough 

for the step 3)c)i). The data fidelity factor can be 1000 
and 0.5  . The derivative operator   ( ) is computed using 
forward differences, while the divergence operator ( div ) 
uses backward differences. The derivatives of the images are 
computed using central differences. The five points mask 
[1, 8,0,8, 1] /12  gives very good results.  

       

a) input image  I   b) spatial kernel 
s

G   c) range kernel 
r

G  
d) combined kernel 

·
s r

G G   

e) output  [ ]BF I  

Fig. 2.  The bilateral filter (the images are taken from [13]) 
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