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Abstract— Modeling and tracking dynamic entities in the driving 
environment is a complex task, as one has to accommodate 
multiple types of scenarios. Extraction of dynamic properties of 
obstacles becomes difficult when the measurement sensors do not 
provide speed directly. The dynamic polyline representation of 
obstacles is a compromise between the rigid model-based cuboid 
representation and the model-free representation of occupancy 
grids. This paper presents a polyline-based obstacle extraction 
system, based on a particle-based occupancy grid generated by 
processing of stereovision data. We have developed a real-time 
flexible method for occupancy grid modeling and representation 
using particles that move from cell to cell and are created and 
destroyed based on measurements derived from stereovision. The 
results of the occupancy grid processing are subjected to the 
Border Scanner algorithm, which extracts polylines from 
occupied cells, by taking into consideration only the most 
relevant information of the grid. The resulting system is able to 
extract individual objects from the occupancy grid, model them 
as polylines, and estimate their speed without making 
assumptions about their shape or size.  
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I.  INTRODUCTION  

Real-time perception of dynamic environments is a 
challenging research task, as it implies choosing adequate 
models for the dynamic and static entities, models that will 
accurately describe the geometrical shape and the dynamic 
evolution in time, and matching these models with the 
available, and often heterogeneous, sensorial data. One of the 
most complex and heterogeneous dynamic environment is the 
driving environment, especially when the scenario is urban. A 
simpler driving environment, clearly structured, is composed of 
mostly basic geometrical shapes. The obstacles can be modeled 
as cuboids having position, size and speed, and the driving 
surface delimiters can be modeled as parametrical curves. The 
highway and most of the urban and rural sections of road are 
usually suitable for geometrical modeling and tracking. 

The cuboid-based tracking of obstacles may not be the best 
choice when the environment to be tracked is an intersection, a 
busy urban center, or an off-road scenario. Even if parts of this 
environment can be tracked by estimating the parameters of 
cuboidal model, many essential parts of the environment will 
not fulfill the constraints of the models. The main problem of a 

cuboid-based representation of a dynamic environment is that 
when the perception system relies on sensors that are unable to 
deliver dynamic information directly (such is the case of laser 
scanners or stereovision, capable of delivering 3D information, 
but not speed), the estimation of speed must rely on data 
association and cuboid following across frames. An object that 
is only partially visible, or an object that is not suitable for 
cuboidal representation, or an object that changes its size or 
shape will mislead the cuboid-based tracking system, and 
correct speed estimation will be impossible to achieve. For this 
reason, any perception system can be greatly improved if the 
dynamic properties of the environment can be estimated 
independently from the choice of object representation.  

In order to achieve the goal of extracting the speed 
independently from object model, intermediate tracking 
solutions are devised. Such solutions can directly track 3D 
points (the 6D vision technique, presented in [1]), compact 
dynamic obstacle primitives such as the stixels [2], or they can 
use track the occupancy and speed of a cell in the map, such as 
in the case of occupancy grids. 

The dynamic occupancy grid is a good choice for the 
driving related dynamic environment, as it is capable of 
concisely describing the relevant aspects while maintaining a 
decent level of computation complexity. Maybe one of the first 
uses of occupancy grids, under the name of probabilistic local 
maps, is presented by Elfes in [3], in the context of sonar based 
robot navigation, and the probability inference mechanism for 
handling the uncertainty of range sensors in computing the 
probability of each cell’s occupancy state is presented in [4]. 
The initial occupancy grids, such as those presented in [3] and 
[4], are simple 2D maps of the environment, each cell 
describing the probability of it being occupied or free. By 
adding the speed factor in the environment estimation, the 
complexity increases significantly, as the cells are now strongly 
interconnected. The work of Coué et al, presented in [5], uses a 
4D occupancy grid, where each cell has a position and two 
speed components along each axis. By estimating the 
occupancy of each cell in the 4D grid, the speeds for the 
classical cells in the 2D grid can be computed.  Another 
solution for the representation of speeds is presented by Chen 
et al, in [6]. Instead of having a 4D grid, this solution comes 
back to 2D, but uses for each cell a distribution of speeds, in 
the form of a histogram. 



While the occupancy grids may be a valuable tool for 
estimating speeds and occupancies at map cell level, it does not 
provide a means of identifying individual objects. What we 
need is a method for identifying these objects, which combines 
the advantages of an occupancy grid with the advantages of a 
cuboid model, without bringing along the latter’s problems. 
Basically, we need a way to extract freeform objects from the 
occupancy grid cells. A good approach towards this goal is the 
extraction of polylines. One of the advantages of the polyline 
based objects representation is the close approximation of the 
object contour by the polygonal model while having a number 
of vertices as small as possible. At the same time, the polyline 
could inherit the properties of type, position, and height, and 
the dynamic features of the associated object. The polyline 
extraction methods differ by the nature of the information as 
well as by the sensors used for data acquisition process. 
Current systems use laser [9], [10], sonar [11], or vision 
sensors [11]. The polyline representation was chosen in [10] 
for terrain-aided localization of autonomous vehicle. The new 
range data obtained from the sensor are integrated into the 
polyline map by attaching line segments to the end of the 
polyline as the vehicle moves gradually. 

This paper presents a polyline-based obstacle extraction 
system, based on a particle-based occupancy grid generated by 
processing of stereovision data. We have developed a real-time 
flexible method for occupancy grid modeling and 
representation using particles that move from cell to cell and 
are created and destroyed based on measurements derived from 
stereovision. The results of the occupancy grid processing are 
subjected to the Border Scanner algorithm, which extracts 
polylines from occupied cells, by performing radial scanning 
using the position of the ego vehicle as the scan rotation center. 
For the resulted polylines an average speed is computed, as an 
average speed of the grid occupied cells neighboring the 
polyline. 

II.  SYSTEM ARCHITECTURE 

Our Dynamic Environment Perception System has been 
projected for an urban driving assistance system where the 
surrounding world is crowded and unstructured. We extended 
our Dense Stereo-Based Object Recognition System 
(DESBOR) by consequently processing the Elevation Map and 
building a Particle Occupancy Grid representation with the 
occupancy and velocity probability distribution of each grid 
cell. A detailed description about the DESBOR system is 
presented in [13]. Using Particle Occupancy Grid as 
intermediate representation and tracking solution we extract 
dynamic obstacle primitives associated to each object from the 
scene. The result is a 2.5D compact representation of the 
environment and a more accurate estimation of the object 
speeds as only the relevant grid cells are processed. This is 
achieved by radial scanning of the particle occupancy grid and 
analyzing the grid delimiters’ neighborhood.  

The Dynamic Environment Perception system architecture 
consists in the following main components (see figure 1): 

TYZX Hardware Stereo Reconstruction Board: The 
3D reconstruction is performed by hardware, a specialized PCI 
board (“TYZX”) [14]. 

 

Figure 1.  Dynamic Environment Perception System Architecture. 

Reconstructed 3D Points: The reconstructed 3D points 
are used for the occupancy grid generation. 

Elevation Map Processing Module: The Elevation Map 
(see figure 2.b) represents a description of the scene, computed 
from the raw dense stereo information. The Elevation Map 
cells are classified into road, traffic isle and object cells. A 
detailed description about the Elevation Map is presented in 
[8]. 

Particle Occupancy Grid: Is described as an intermediate 
Cartesian representation of the environment, using a forward 
sensor probability model, and producing a fully dynamic grid 
based on particles (see figure 2.c). Each particle has a position 
and speed, and can migrate in the grid from cell to cell 
depending on its motion model and motion parameters. A grid 
particle will also be created and destroyed using a weighting-
resampling mechanism specific to particle filter algorithms. A 
more detailed description of the particle grid tracking algorithm 
is given in [15] and [16]. 

Object Delimiters: The Object Delimiters are extracted 
by radial scanning of the Particle Occupancy Grid. A set of 
unstructured polygons approximated with the objects contour is 
generated. For Delimiters Extraction we used the Border 
Scanning algorithm presented in [12]. 

Environment Representation Output: A dynamic 
polyline map is generated as the result of delimiters extraction 
particle occupancy grid analysis. For each polyline element we 
keep the following information:  

• A set of vertices that describe the polygon. 



• Static Object features: position and height. 

• Type of the associated obstacle: Static or Moving 
obstacle, Object delimiter or Curb delimiter. 

• Dynamic Features: Object Orientation and Magnitude. 

 

Figure 2.  The Elevation map (b) and Particle Occupancy Grid (c) of a scene 
(a). The Elevation Map cells are roughly classified (blue – road, yellow – 
traffic isle, red – obstacles).  

III.  PARTICLE OCCUPANCY GRID 

Our occupancy grid solution is defined by a new and 
original method of representation of the occupancy and 
velocity probability distribution of each grid cell, and by the 
original updating algorithm derived from this representation. 
The occupancy probability of each grid cell is described by the 
number of particles in that cell, and the particles have a dual 
nature – they describe occupancy hypotheses, as in the particle 
filtering algorithms such as CONDENSATION [7], but can 
also be regarded as physical building blocks of our modeled 
world. The grid tracking algorithm is particle-oriented, not cell 
oriented. The particles have position and speed, and they can 
migrate from cell to cell depending on their motion model and 
motion parameters, but they are also created and destroyed 
using the same logic as the weighting-resampling mechanism 
described in [7]. The measurement data is the raw obstacle grid 
obtained by processing the elevation map. 

The world is represented by a 2D grid, mapping the bird-
eye view 3D space into discrete 20 cm x 20 cm cells. The size 
of the grid is 250 rows x 120 columns, corresponding to a 
scene size of 50x24 meters. The aim of the tracking algorithm 
is to estimate the occupancy probability of each grid cell, and 
the speed components on each axis. The tracking goals are 
achieved by the use of a particle-based filtering mechanism.  

Considering a coordinate system where the z axis points 
towards the direction of the ego-vehicle, and the x axis points 
to the right, the obstacles in the world model are represented by 
a set of particles: 
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each particle i having a position in the grid, described by the 
row r i (a discrete value of the distance in the 3D world z) and 
the column ci (discrete value of the lateral position x), and a 

speed, described by the speed components vci and vri. An 
additional parameter, ai, describes the age of the particle, since 
its creation. The purpose of this parameter is to facilitate the 
validation and the speed estimation process, as only particles 
that survive in the field for several frames are taken into 
consideration. The total number of particles in the scene NS is 
not fixed, but dependent on the occupancy degree of the scene, 
that is, the number of obstacle cells in the real world. Having 
the population of particles in place, the occupancy probability 
of a cell C is estimated as the ratio between the number of 
particles whose position coincides with the position of the cell 
C and the total number of particles allowed for a single cell, 
NC. 
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The number of allowed particles per cell NC is a constant of 
the system. In setting its value, a tradeoff between accuracy 
and time performance should be considered. A large number 
means that on a single cell multiple speed hypotheses can be 
maintained, and therefore the tracker can have a better speed 
estimation, and can handle fast moving objects better. 
However, the total number of particles in the scene will be 
directly proportional with NC, and therefore the speed of the 
algorithm will decrease. 

The speed of a grid cell can be estimated as the average 
speed of its associated particles, if we assume that only one 
obstacle is present in that cell. Of course, the particle 
population can handle the situation when multiple obstacles, 
having different speeds, share the same cell, and in this case the 
speed estimate of the cell must be computed by clustering.  
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Thus, the population of particles is sufficiently 
representative for the probability density of occupancy and 
speed for the whole grid. Multiple speed hypotheses can be 
maintained simultaneously for a single cell, and the occupancy 
uncertainty is represented by the varying number of particles 
associated to the cell. The tracking algorithm can now be 
defined: using the measurement information in the form of 
elevation maps, it will create, update and destroy particles such 
that they accurately represent the real world. 

The first step of the algorithm is the prediction, which is 
applied to each particle in the set. The positions of the particles 
are altered according to their speed, and to the motion 
parameters of the ego vehicle (see figure 3). Also, a random 
amount is added to the position and speed of each particle, for 
the effect of stochastic diffusion. The second step is the 
processing of measurement information. This step is based on 
the raw occupancy cells provided by dense stereo processing, 
and provides the measurement model for each cell. 

The measurement model information is used to weight the 
particles, and resample them in the same step (see figure 4). By 
weighting and resampling, the particles in a cell can be 
multiplied or reduced. The final step is to estimate the 

 



occupancy and speeds for each cell. A more detailed 
description of the particle grid tracking algorithm is given in 
[15] and [16]. 

   
Figure 3.  Migration of particles from one cell to another, as prediction is 
applied.  

  
Figure 4.  Weighting and resampling. The weight of the occupied hypothesis 
is encoded in the darkness of the cell of the left grid. In the right grid, the 
effect of resampling is shown, as particles are multiplied or deleted.  

IV.  DELIMITERS EXTRACTION USING DIGITAL OCCUPANCY 

GRID 

Regardless the unstructured environment representation 
solutions, there are some basic problems which significantly 
influences the surrounding world modeling as well as the static 
or dynamic parameters computation. Beside the stereo 
reconstruction noises, an unstructured dynamic environment 
may include two types of errors:  

• Temporal errors: the object shapes are influenced by the 
presence or absence of the information at different 
moments of time.  

• Spatial Errors: when an object part is occluded it may 
lead to a noisy or a partial representation of that object. In 
this situation it’s difficult to model and to track such an 
object at a high accuracy and confidence. 

In order to reduce the errors described above we developed 
a method which takes into consideration only the most visible 
parts from the observation point (ego-car) by radial scanning of 
the occupancy grid. The result is a polygonal model of the 
environment with the obstacle dynamic features associated to 
it.  

For the delimiters extraction we extend the Border Scanner 
algorithm described in [12]. In our case we use a Probabilistic 
Occupancy Grid as the input information. The main idea is that 
we are taking in account only the most relevant information by 
extracting object delimiters and its vicinity in order to estimate 

more accurate speed vectors corresponding to objects form a 
traffic scene. Our method is based on a Ray-Casting approach 
by determining the first occupied point intersected by a ray 
which extends from the ego-car position. The scanning axis 
moves in the radial direction, having a fixed center at the Ego 
Car position (see figure 5). The scanning process is made into 
the limits of two given angles, thus only the interest area are 
scanned, where the object delimiters can be detected. Having a 
radial axis with a given slope we try to find the nearest grid cell 
point from the Ego Car situated on this axis. In this way, all 
subsequent cells Pi will be accumulated into a ContourList, 
moving the scanning axis in the radial direction: 

   ),...,{ 21 nPPPtContourLis =  (4) 

Once an object point P is reached we compute its speed 
(vri, vci) by averaging speed components on a connected 
neighborhood of W*W size, with W = 2k+1 (for our 
experiments we used a k=1): 
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Thus, each delimiter point Pi is described by its position 

(r i,ci) as well as by its speed components (ivr , ivc ). 

 

Figure 5.  Occupancy Grid Radial Scanning. A mean speed V is computed 
for each scanned point by averaging speed components on a connected 
neighborhood of W*W size. 

The mean vector of an obstacle is computed by using vector 
addition for all delimiter point speeds accumulated into the 

ContourList. Given a set of individual components (ivr , ivc ), 
the object speed is calculated: 
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Where n is the number of delimiter points. 



The object speed magnitude M is defined by: 
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The mean direction θ  is described by the function: 

 θ = atan2 (vr ,vc). (8) 

V. EXPERIMENTAL RESULTS 

For the experimental results we have tested several 
scenarios from the urban traffic environment using a 2.66GHz 
Intel Core 2 Duo Computer with 2GB of RAM.  Figure 6 
illustrates the obtained results in a dynamic traffic scenario. 
The static obstacle delimiters are colored with green while 
dynamic obstacles are represented by red delimiters. We 
considered that the objects with a speed greater than 6km/h are 
dynamic. The intermediate representation by Particle 
Occupancy Grid is shown in the figure 6.b. Figure 6.c presents 
a top view of the Elevation Map and Polyline Representation 
based on Particle Occupancy Grid. The speed vectors 
associated to each dynamic obstacle are colored with yellow. 

For the numerical evaluation of the results we have 
performed tests for the following scenarios: an incoming 
vehicle, a stationary lateral vehicle, and an outgoing dynamic 
motorcycle. The delimiters speeds are compared to the speeds 
obtained directly by the particle grid tracking method [15], and 
they are also compared to the object cuboidal model tracking 
[17]. The first case is of an incoming vehicle, which due to its 
high relative speed is seen only for a brief period of time. The 
results of the speed estimation are shown in figure 7. 

 

Figure 6.  Dynamic Environment Perception (a), the Particle Occupancy Grid 
(b), and the top view of the Elevation Map (c) with the extracted polylines. 
Speed vectors are colored with yellow. 

It can be seen that the obtained measurements by particle 
occupancy grid tracking (blue color) are available earlier than 
the object cuboid tracking speeds (yellow color), but the 
particle grid results converge slower to the model based 
measurements. Although the cuboid tracking speeds seem to be 
more stable, the results are available only for a short period of 
time. It can be observed that the delimiter based speed 
estimation (magenta color) converges almost immediately to 
the values estimated by the model tracking. It provides a better 
match to the real speed than the particle grid tracking method 
and the results are available earlier than the cuboid based 
tracking technique. 

The second test was performed in a scenario with a 
stationary lateral obstacle. In this case the target speed of 0 is 
given as the ground truth for our measurements. Analyzing the 
results illustrated in the figure 8, we can see that the obstacle 
delimiter based speed estimation, converge more quickly 
towards the ground truth. The estimated speeds are more stable 
than the grid based tracking measurements (lower error 
standard deviation). The result is more accurate comparing to 
the other two outputs (lower mean absolute error). This fact is 
confirmed by the table 1. 

 

Figure 7.  Speed Estimation. Incoming vehicle. 

 

Figure 8.  Speed Estimation. Stationary lateral vehicle (green color). 

TABLE I.  SPEED ESTIMATION ACCURACY 

Speed Estimation Methods 
Accuracy 
Metrics Dynamic Polylines 

Particle 
Occupancy Grid 

Cuboid-
based 

Tracking 
STDEV 
(km/h) 

1.99 4.23 1.32 

MAE  
(km/h) 

0.81 3.62 1.36 

 

The third case is of an outgoing motorcycle. First, the speed 
estimation was performed without using the polyline 
neighborhood by involving only the contour points (see figure 
9, top diagram), then we have tested the same scenario by 
averaging contour speeds on a connected neighborhood of 3x3 
size (see figure 9, bottom diagram). It can be observed that the 
particle occupancy grid and the object delimiter results 
converge more quickly towards the mean values estimated by 
cuboid based object tracking. The model based tracking is not 
able to provide speed values in a reasonable time because its 
object association stage is influenced by the high speed of the 
motorcycle (about 90 Km/h). Also we can see that the delimiter 
based estimation is closer to the cuboid based tracking results. 
However, in this case the contour based approach is not as 

 

 

 



stable as the particle occupancy grid method (a greater standard 
deviation). This is because the amount of information is 
smaller and inaccurate at far distances from the ego-car. A 
possible solution is to choose a larger neighborhood at once 
with the distance and the object size. The numerical evaluation 
demonstrates that, in the first case, by choosing a 3x3 
neighborhood, we obtained a lower standard deviation, 9.2 
km/h in comparison with the case when a neighborhood is not 
employed (10.9 km/h). 

 

Figure 9.  Speed Estimation. Outgoing motorcycle (red color). Top diagram: 
results are estimated by using a polyline neighborhood of 3x3 size. Bottom 
diagram: results are estimated without averaging speed with neighboring cells. 

VI.  CONCLUSIONS 

In this paper we present a new fast converging technique 
for dynamic obstacles detection and representation using a 
particle-based occupancy grid generated by processing of 
stereovision data. We have developed a real-time flexible 
method for occupancy grid modeling and representation using 
particles that move from cell to cell and are created and 
destroyed based on measurements derived from stereovision. 
The results of the occupancy grid processing are subjected to 
the Border Scanner algorithm, which extracts polylines from 
occupied cells, by performing radial scanning using the 
position of the ego vehicle as the scan rotation center. For each 
extracted delimiter, an average speed is computed, as an 
average speed of the grid occupied cells neighboring the 
polyline. The result is a more compact representation of the 
environment and a more accurate estimation of the object 
speed.  

For the numerical evaluation of the results we have 
performed tests for the following scenarios: an incoming 
vehicle, a stationary lateral vehicle, and an outgoing dynamic 
motorcycle. The delimiters speeds are compared to the speeds 
obtained directly by a particle grid tracking method, and they 
are also compared to the object cuboidal model tracking. The 
delimiter based speed estimation proved to be more accurate 
comparing to the other two outputs. As future work we propose 

to focus our research in improving the accuracy of the 
Environment Representation by using a fusion between our 
solution and others fast converging speed estimation methods. 

VII.  ACKNOLEDGMENT 

This work was supported by CNCSIS –UEFISCSU, project 
number PNII – IDEI 1522/2008. 

REFERENCES 
[1] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of 

stereo and motion for robust environment perception,” in proc of 27th 
Annual Meeting of the German Association for Pattern Recognition 
DAGM ’05, Vienna, October, 2005.  

[2] D. Pfeiffer, U. Franke, "Efficient Representation of Traffic Scenes by 
Means of Dynamic Stixels", IEEE Intelligent Vehicles Symposium 
(IEEE-IV), 2010, pp. 217-224. 

[3] A. Elfes, “A Sonar-Based Mapping and Navigation System”, in proc of 
IEEE International Conference on Robotics and Automation, April 
1986, pp. 1151-1156. 

[4] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and 
Navigation”, Computer, vol. 22, No. 6, June 1989, pp. 46-57. 

[5] C. Coue, C.Pradalier, C.Laugier, T.Fraichard, P.Bessiere, “Bayesian 
Occupancy Filtering for Multitarget Tracking: An Automotive 
Application”, The International Journal of Robotics Research, 25(1):19, 
2006. 

[6] C. Chen, C. Tay, K. Mekhnacha, C. Laugier, “Dynamic environment 
modeling with gridmap: a multiple-object tracking application”, in proc 
of International Conference on Automation, Robotics and Computer 
Vision (ICARCV) 2006, pp. 1-6. 

[7] M. Isard, A. Blake, “CONDENSATION -- conditional density 
propagation for visual tracking”, International Journal of Computer 
Vision, Vol. 29, No. 1, pp.  5-28, (1998). 

[8] F. Oniga, S. Nedevschi, “Processing Dense Stereo Data Using Elevation 
Maps: Road Surface, Traffic Isle, and Obstacle Detection”, IEEE 
Transactions on Vehicular Technology, Vol. 59, No. 3, 2010. 

[9] S. Kolski, D. Ferguson, M. Bellino, R. Siegwart, "Autonomous driving 
in structured and unstructured environments", in proc of IEEE Intelligent 
Vehicles Symposium, 2006. 

[10] R. Madhavan, "Terrain aided localization of autonomous vehicles", in 
proc of Symposium on Automation and Robotics in Construction, 
Gaithersburg, 2002. 

[11] A. Goncalves, A. Godinho, J. Sequeira, "Lowcost sensing for 
autonomous car driving in highways", in proc of ICINCO2007, Angers, 
France, 2007. 

[12] A. Vatavu, Sergiu Nedevschi, Florin Oniga, “Real Time Object 
Delimiters Extraction for Environment Representation in Driving 
Scenarios”. In: ICINCO-RA 2009, Milano, Italy, 2009, pp 86-93. 

[13] S. Nedevschi, R. Danescu, T. Marita, F. Oniga,  C. Pocol, S. Sobol, C. 
Tomiuc, C. Vancea, M. M. Meinecke, T. Graf, T. B. To, M. A. Obojski, 
”A sensor for urban driving assistance systems based on dense 
stereovision”. In: Intelligent Vehicles Symposium 2007, pp. 278—286. 

[14] J. I. Woodill, G. Gordon, R. Buck, “Tyzx deepsea high speed stereo 
vision system”. In: IEEE Computer Society Workshop on Real Time 3-D 
Sensors and Their Use, Conference on Computer Vision and Pattern 
Recognition (2004). 

[15] R. Danescu, F. Oniga, S. Nedevschi, “Particle Grid Tracking System for 
Stereovision Based Environment Perception”, in proc of IEEE 
Intelligent Vehicles Symposium 2010. 

[16] R. Danescu, F. Oniga, S. Nedevschi, “Modeling and Tracking the 
Driving Environment with a Particle Based Occupancy Grid”, IEEE 
Transactions on Intelligent Transportation Systems, in print. 

[17] R. Danescu, S. Nedevschi, M.M. Meinecke, T. Graf, “Stereovision 
Based Vehicle Tracking in Urban Traffic Environments”, Proceedings of 
the IEEE Intelligent Transportation Systems Conference (ITSC 2007), 
Seattle, USA, 2007. 

 

 


