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Abstract— Modeling and tracking dynamic entities in the driving
environment is a complex task, as one has to accorodate
multiple types of scenarios. Extraction of dynamigroperties of
obstacles becomes difficult when the measurementsers do not
provide speed directly. The dynamic polyline represntation of
obstacles is a compromise between the rigid mode&$ed cuboid
representation and the model-free representation obccupancy
grids. This paper presents a polyline-based obstaclextraction
system, based on a particle-based occupancy gridrggated by
processing of stereovision data. We have developedreal-time
flexible method for occupancy grid modeling and repesentation
using particles that move from cell to cell and arecreated and
destroyed based on measurements derived from stergsion. The
results of the occupancy grid processing are subjexd to the
Border Scanner algorithm, which extracts polylines from
occupied cells, by taking into consideration only e most
relevant information of the grid. The resulting sysem is able to
extract individual objects from the occupancy grid,model them
as polylines, and estimate their speed without makg
assumptions about their shape or size.

Keywor ds-environment representation; stereovision; occupancy
grid; polygonal model; particle filtering;

I.  INTRODUCTION
Real-time perception of dynamic environments

challenging research task, as it implies choosing adequ

models for the dynamic and static entities, models Wikt

accurately describe the geometrical shape and the dyna
evolution in time, and matching these models with t

available, and often heterogeneous, sensorial data.oDife

most complex and heterogeneous dynamic environment is tl
driving environment, especially when the scenario isria
simpler driving environment, clearly structured, is pased of
mostly basic geometrical shapes. The obstacles camdelea
as cuboids having position, size and speed, and thenglrivi
surface delimiters can be modeled as parametrical ufve
highway and most of the urban and rural sections of avad

usually suitable for geometrical modeling and tracking.

The cuboid-based tracking of obstacles may not be the bedassical cells in the 2D grid can be computed.

cuboid-based representation of a dynamic environment tis tha
when the perception system relies on sensors that apéeuna
deliver dynamic information directly (such is the caséasér
scanners or stereovision, capable of delivering 3Drmméition,

but not speed), the estimation of speed must rely on data
association and cuboid following across frames. Anablifet

is only partially visible, or an object that is not suiealbbr
cuboidal representation, or an object that changes zés i
shape will mislead the cuboid-based tracking system, and
correct speed estimation will be impossible to achiéee this
reason, any perception system can be greatly imprdven i
dynamic properties of the environment can be estimated
independently from the choice of object representation.

In order to achieve the goal of extracting the speed
independently from object model, intermediate tracking
solutions are devised. Such solutions can directly t@&ok
points (the 6D vision technique, presented in [1]), compac
dynamic obstacle primitives such as the stixels [2}hey can
use track the occupancy and speed of a cell in the map, such as
in the case of occupancy grids.

The dynamic occupancy grid is a good choice for the
driving related dynamic environment, as it is capable of
concisely describing the relevant aspects while maimigiai

is gdecent level of computation complexity. Maybe one offittsé
a¢ses of occupancy grids, under the name of probabilistit loca

maps, is presented by Elfes in [3], in the contexbabs based
ot navigation, and the probability inference mechan@m f

hdandling the uncertainty of range sensors in computing the

probability of each cell’s occupancy state is preseiied].

%}ne initial occupancy grids, such as those presentft] and

, are simple 2D maps of the environment, each cell
describing the probability of it being occupied or fré&y
adding the speed factor in the environment estimation, the
complexity increases significantly, as the cellsraow strongly
interconnected. The work of Coué et al, presented]jrufes a
4D occupancy grid, where each cell has a position and two
speed components along each axis. By estimating the
occupancy of each cell in the 4D grid, the speeds for the
Another

choice when the environment to be tracked is an interseetion solution for the representation of speeds is presenteZhien

busy urban center, or an off-road scenario. Evenrispd this

et al, in [6]. Instead of having a 4D grid, this solnticomes

environment can be tracked by estimating the parameters back to 2D, but uses for each cell a distribution of dpem
cuboidal model, many essential parts of the environméht w the form of a histogram.

not fulfill the constraints of the models. The main problef a



While the occupancy grids may be a valuable tool for Left Camera Right Camera
estimating speeds and occupancies at map cell ledeledt not % %
provide a means of identifying individual objects. What we i
need is a method for identifying these objects, which coesb
the advantages of an occupancy grid with the advantages of Stereo
cuboid model, without bringing along the latter's problems Reconstruction
Basically, we need a way to extract freeform objéaim the (TYZX Hardware)
occupancy grid cells. A good approach towards thi$ igahe

extraction of polylines. One of the advantages of thelipely

based objects representation is the close approximatitre of Reconstructed 3D Points
object contour by the polygonal model while having a number ‘

of vertices as small as possible. At the same tiheepblyline

could inherit the properties of type, position, and height] Elevation Map Processing
the dynamic features of the associated object. Thelipsly ‘
extraction methods differ by the nature of the infororatas

well as by the sensors used for data acquisition process. Particle Occupancy Grid

Current systems use laser [9], [10], sonar [11], oioNis
sensors [11]. The polyline representation was chosdmOh ‘
for terrain-aided localization of autonomous vehiclee hew { Radial Scanning
range data obtained from the sensor are integrated heto t !
polyline map by attaching line segments to the end of the | Object Delimiters
polyline as the vehicle moves gradually.

Dynamic Futures

This paper presents a polyline-based obstacle exginact

system, based on a particle-based occupancy grid genbsated - ,
. .. . Dynamic
processing of stereovision data. We have developed-timeal Environment )
flexible method for occupancy grid modeling and \_Representation /
representation using particles that move from cell tbasel
are created and destroyed based on measurements dierived Figure 1. Dynamic Environment Perception System Architecture.

stereovision. The results of the occupancy grid procgssie ) )
subjected to the Border Scanner algorithm, which extracts Reconstructed 3D Points:The reconstructed 3D points
polylines from occupied cells, by performing radial scagni are used for the occupancy grid generation.

using the position of the ego vehicle as the scan rotatioercent Elevation Map Processing Module:The Elevation Map
For the resulted polylines an average speed is comipasean  (qee figure 2.b) represents a description of the scemguted

average speed of the grid occupied cells neighboring o the raw dense stereo information. The Elevatiorp Ma
polyline. cells are classified into road, traffic isle and objeells. A
detailed description about the Elevation Map is preseinted
II.  SYSTEM ARCHITECTURE [8].

Our Dynamic Environment Perception System has been particle Occupancy Grid: Is described as an intermediate
projected for an urban driving assistance system where tCartesian representation of the environment, using aafdrw
surrounding world is crowded and unstructured. We extendegbnsor probability model, and producing a fully dynagrid
our Dense Stereo-Based Object Recognition Systemjased on particles (see figure 2.c). Each particle hasitiopo
(DESBOR) by consequently processing the Elevation Map anghq speed, and can migrate in the grid from cell b ce
building a Particle Occupancy Grid representation with thgiepending on its motion model and motion parameters.d\ gri
occupancy and velocity probability distribution of eachdgri particle will also be created and destroyed using a waight
cell. A detailed description about the DESBOR system isesampling mechanism specific to particle filter aldgonis. A

presented in [13]. Using Particle Occupancy Grid asnore detailed description of the particle grid tragkagorithm
intermediate representation and tracking solution weaext s given in [15] and [16].

dynamic obstacle primitives associated to each oljest the . o . o

scene. The result is a 2.5D compact representation of the Object Delimiters: The Object Delimiters are extracted
environment and a more accurate estimation of the obje8y radial scanning of the Particle Occupancy Grid. Addet
speeds as only the relevant grid cells are procedges.is  unstructured polygons approximated with the objects coiour
achieved by radial scanning of the particle occupanal il generated. For Delimiters Extraction we used the Borde

analyzing the grid delimiters’ neighborhood. Scanning algorithm presented in [12].
The Dynamic Environment Perception system architecture ~Environment Representation Output: A dynamic
consists in the following main components (see figure 1): polyline map is generated as the result of delimitetsaetion

) particle occupancy grid analysis. For each polylinenelet we
TYZX Hardware Stereo Reconstruction Board: The  keep the following information:
3D reconstruction is performed by hardware, a spee@lRClI
board (“TYZX") [14]. « A set of vertices that describe the polygon.



«  Static Object features: position and height. speed, described by the speed componegtsand vri. An
. . . additional parameteg;, describes the age of the particle, since
* Type of the associated obstacle: Static or Movingis creation. The purpose of this parameter is to fatlithe
obstacle, Object delimiter or Curb delimiter. validation and the speed estimation process, as anrticles
- Dynamic Features: Object Orientation and Magnitude. that survive in the field for several frames are faketo
consideration. The total number of particles in the sééis
not fixed, but dependent on the occupancy degree of the scene,
that is, the number of obstacle cells in the real wadtlaving
the population of particles in place, the occupancy prébabi
of a cellC is estimated as the ratio between the number of
particles whose position coincides with the position ofcié
C and the total number of particles allowed for a sirggll,
Nec.

US| =r,,¢ =c¢,
P (c) =P I.N : H @
C

The number of allowed particles per dgl is a constant of

the system. In setting its value, a tradeoff betwaecuracy

and time performance should be considered. A large number

means that on a single cell multiple speed hypotheses can be

Figure 2. The Elevation map (b) and Particle Occupancy Grjibf a scene  majntained, and therefore the tracker can have a betted spe

(@). The Elevation Map cells are roughly classifiedue — road, yellow - agtimation, and can handle fast moving objects better.

traffic isle, red — obstacles). ! X . .
However, the total number of particles in the scene will be
directly proportional withN¢, and therefore the speed of the

. PARTICLE OCCUPANCY GRID algorithm will decrease.

Our occupancy grid solution is defined by a new and The speed of a grid cell can be estimated as the gevera
original method of representation of the occupancy andpeed of its associated particles, if we assume thigt ame
velocity probability distribution of each grid cell, aiy the obstacle is present in that cell. Of course, the @arti
original updating algorithm derived from this representatio population can handle the situation when multiple obstacles,
The occupancy probability of each grid cell is describethby having different speeds, share the same cell, and inabésthe
number of particles in that cell, and the particlesehawdual speed estimate of the cell must be computed by clustering
nature — they describe occupancy hypotheses, as in tidepart

filtering algorithms such as CONDENSATION [7], but can Z(vq,vri)
also be regarded as physical building blocks of our modelei\/ r) = 0 0S,% =X;,2 =2, 3
world. The grid tracking algorithm is particle-orientext cell G Vic) = ©

oriented. The particles have position and speed, andctey |{p' 0S| i =16 = Cc}l

migrate from cell to cell depending on their motion maatad Thus, the population of particles is sufficiently
motion parameters, but they are also created and destroygspresentative for the probability density of occupaacyl
using the same logic as the weighting-resampling mechanisgpeed for the whole grid. Multiple speed hypotheses can be
described in [7]. The measurement data is the raw obggéid  maintained simultaneously for a single cell, and the ooy
obtained by processing the elevation map. uncertainty is represented by the varying number of pestic

The world is represented by a 2D grid, mapping the birg@ssociated to the cell. The tracking algorithm can  rimew
eye view 3D space into discrete 20 cm x 20 cm cells. Hee si defined: using the measurement information in the form of
of the grid is 250 rows x 120 columns, corresponding to %:evaﬁlon maps, 'tIW'” create, uEdate Iand ?;strquiestlsuch
scene size of 50x24 meters. The aim of the trackingitigor hat they accurately represent the real world.

is to estimate the occupancy probability of each geid| and The first step of the algorithm is thrediction which is
the speed components on each axis. The tracking gaals &pplied to each particle in the set. The positions opérticles
achieved by the use of a particle-based filtering meshani are altered according to their speed, and to the motion

parameters of the ego vehicle (see figure 3). Als@naom
amount is added to the position and speed of each pafticle,
the effect of stochastic diffusion. The second stephis t
processing of measuremenformation. This step is based on
the raw occupancy cells provided by dense stereo pragessi
S={p|p =(c,r,vg,vr,a )i =1..Ng}, (1)  and provides the measurement model for each cell.

Considering a coordinate system where thaxis points
towards the direction of the ego-vehicle, andsthaxis points
to the right, the obstacles in the world model areesgnted by
a set of particles:

The measurement model information is useevéightthe
particles, andesamplethem in the same step (see figure 4). By
weighting and resampling, the particles in a cell can be
multiplied or reduced. The final step is to estimate the

each particlé having a position in the grid, described by the
row r; (a discrete value of the distance in the 3D wayldnd
the columng; (discrete value of the lateral positigh and a



occupancy and speeds for each cel. A more detailechore accurate speed vectors corresponding to objects d
description of the particle grid tracking algorithm isep in  traffic scene. Our method is based on a Ray-Castingapipr
[15] and [16]. by determining the first occupied point intersected byya ra
which extends from the ego-car position. The scanning axis
moves in the radial direction, having a fixed centehatEgo

t
J
]

e — ~ Car position (see figure 5). The scanning process is inéale
e | the limits of two given angles, thus only the interasta are
scanned, where the object delimiters can be detectethgHav
1 : radial axis with a given slope we try to find the netageisl cell
L A point from the Ego Car situated on this axis. In this ,vadly
™ subsequent cell®; will be accumulated into &ontourList
moving the scanning axis in the radial direction:
ContourLig ={P,P,,..P,) @)
Figure 3. Migration of particles from one cell to another, diction is X i . X
apgp“ed. 9 P e Once an object poinP is reached we compute its speed
(vr, vGg) by averaging speed components on a connected
neighborhood of W*W size, with W = 2k+1 (for our
=y experiments we used a k=1):
e
_ 1 K & _ 1 K
V= os D D Vi VG T D D VG, (9)
*Llj mj W* Tk W* Tk
. ;e . - Thus, each delimiter point; B described by its position
(ri,c;) as well as by its speed componentsi(, VCi).
Figure 4. Weighting and resampling. The weight of the occdpigpothesis
is encoded in the darkness of the cell of the deffi. In the right grid, the
effect of resampling is shown, as particles aretiplidd or deleted.
IV. DELIMITERS EXTRACTION USING DIGITAL OCCUPANCY Neighorhood
GRID
Regardless the unstructured environment representation \““-,'/:\ Ocoupied Cell
solutions, there are some basic problems which significan Empty Cell /
influences the surrounding world modeling as well asstagc
or dynamic parameters computation. Beside the stereo Vivrvo)
reconstruction noises, an unstructured dynamic environment Vo /
may include two types of errors: L1/ RadalScaming
« Temporal errors: the object shapes are influenced by the \
presence or absence of the information at different R
moments of time. >
e Spatial Errors: when an object part is occluded it may @) Q R ——
lead to a noisy or a partial representation of thatatbjn

this situation it's difficult to model and to track such a

object at a high accuracy and confidence Figure 5. Occupancy Grid Radial Scanning. A mean speed \bisptted
’ for each scanned point by averaging speed comp®namta connected

In order to reduce the errors described above we deadtlopneighborhood of W*W size.
a method which takes into consideration only the most visible . .
parts from the observation point (ego-car) by radial sicgnof The mean vector of an obstacle is computed by usingivect
the occupancy grid. The result is a polygonal model of th@ddition for all delimiter point speeds accumul;ated_mlte t

environment with the obstacle dynamic features assdctate ContourList Given a set of individual componentgr( , VG ),

it. the object speed is calculated:

For the delimiters extraction we extend the Border Seanne 1o 1o —
algorithm described in [12]. In our case we use a Prbg@bi vr = —Zvri ,vc= —ZVCi (6)
Occupancy Grid as the input information. The main idea is tha n4z n4s

we are taking in account only the most relevant inédrom by . o .
extracting object delimiters and its vicinity in orderestimate Wheren is the number of delimiter points.



The object speed magnitubleis defined by: The second test was performed in a scenario with a
stationary lateral obstacle. In this case the tange¢d of O is

M = E /Wz + V_02 ) given as the ground truth for our measurements. Analyhimg
n results illustrated in the figure 8, we can see thatottstacle
delimiter based speed estimation, converge more quickly
The mean directio@ is described by the function: towards the ground truth. The estimated speeds are tabie s
than the grid based tracking measurements (lowerr erro
ng atan? (\W ,V_C). 6) standard deviation). The result is more accurate congp#o

the other two outputs (lower mean absolute error). Husis
confirmed by the table 1.
V.  EXPERIMENTAL RESULTS

For the experimental results we have tested sever )
scenarios from the urban traffic environment using a 2.66GH 7 ] T
Intel Core 2 Duo Computer with 2GB of RAM. Figure 6
illustrates the obtained results in a dynamic traffiensrio.
The static obstacle delimiters are colored with greerlewhi
dynamic obstacles are represented by red delimiters. W /,/ — Delimiters Contour Speed
considered that the objects with a speed greater thafh Gloa 7 ;gkcf'::
dynamic. The intermediate representation by Partick °— .,
Occupancy Grid is shown in the figure 6.b. Figure 6.c presen Frame number
a top view of the Elevation Map and Polyline Represimtat
based on Particle Occupancy Grid. The speed vectors Figure 7. Speed Estimation. Incoming vehicle.
associated to each dynamic obstacle are colorédyeitow.
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For the numerical evaluation of the results we have |-
performed tests for the following scenarios: an incomin¢ \
vehicle, a stationary lateral vehicle, and an outgoingadyc . \
motorcycle. The delimiters speeds are compared tspheds
obtained directly by the particle grid tracking method],[&5d
they are also compared to the object cuboidal modelitgck | \
[17]. The first case is of an incoming vehicle, whitke to its N oo Speos
high relative speed is seen only for a brief periotiré. The /AN —~ Tracking Speed
results of the speed estimation are shown in figure i 13 s 7 9o v B sy® D

Frame number

Speed (Km/h)
@

Figure 8. Speed Estimation. Stationary lateral vehicle (ge#ar).

TABLE I. SPEEDESTIMATION ACCURACY
Speed Estimation Methods
Accuracy : Cuboid-
Metrics Dynamic Polylines | o Paride | g
pancy Tracking
a) b) C) STDEV
(km/h) 1.99 4.23 1.32
) ) . ) ) , MAE

Figure 6. Dynamic Environment Perception (a), the ParticleWancy Grid (km/h) 0.81 3.62 1.36

(b), and the top view of the Elevation Map (c) witte extracted polylines.
Speed vectors are colored with yellow.

The third case is of an outgoing motorcycle. First,4peed
It can be seen that the obtained measurements by partig&iimation was performed without using the polyline
occupancy grid tracking (blue color) are availabldieathan neighborhood by involving only the contour points (see figure
the object cuboid tracking speeds (yellow color), but the)> top diagram), then we have tested the same scenario by
particle grid results converge slower to the model basefVeraging contour speeds on a connected neighborhood of 3x3
measurements. Although the cuboid tracking speeds seken t S12€ (See figure 9, bottom diagram). It can be obsethatthe
more stable, the results are available only for atgiemiod of ~Particle occupancy grid and the object delimiter results
time. It can be observed that the delimiter based spePhverge more quickly towards the mean values estihtate
estimation (magenta color) converges almost immegidte! cuboid baseq object tracking. The model based.trackln'gtls
the values estimated by the model tracking. It providesttarh ~ @bl€ to provide speed values in a reasonable time bettause
match to the real speed than the particle grid trackirthode ~©OPi€ct association stage is influenced by the highdspééne
and the results are available earlier than the cuboiddbasg0torcycle (about 90 Km/h). Also we can see that thiender
tracking technique. ased estimation is closer to the cuboid based trackmgts.
However, in this case the contour based approachtigasio



stable as the particle occupancy grid method (a gre@edard to focus our research in improving the accuracy of the
deviation). This is because the amount of information i€nvironment Representation by using a fusion between our
smaller and inaccurate at far distances from the egoAcar. solution and others fast converging speed estimation a&tho
possible solution is to choose a larger neighborhooohe¢

with the distance and the object size. The numericatatiah VIl.  ACKNOLEDGMENT

demonstrates that, in the first case, by choosing a 3x3 . .
neighborhood, we obtained a lower standard deviation, 9.2 1his work was supported by CNCSIS —“UEFISCSU, project

km/h in comparison with the case when a neighborhood is n&tmber PNII — IDEI 1522/2008.
employed (10.9 km/h).
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