
 

Abstract  In this paper we introduce a novel multimodal 

boosting based solution for semantic segmentation of traffic 

scenarios. Local structure and context are captured from both 

monocular color and depth modalities in the form of image 

channels. We define multiple channel types at three different 

levels: low, intermediate and high order channels. The low 

order channels are computed using a multimodal 

multiresolution filtering scheme and capture structure and 

color information from lower receptive fields. For the 

intermediate order channels, we employ deep convolutional 

channels that are able to capture more complex structures, 

having a larger receptive field. The high order channels are 

scale invariant channels that consist of spatial, geometric and 

semantic channels. These channels are enhanced by additional 

pyramidal context channels, capturing context at multiple 

levels. The semantic segmentation is achieved by a boosting 

based classification scheme over superpixels using multi-range 

channel features and pyramidal context features. A pre-

segmentation is used to generate semantic channels as input for 

more powerful final segmentation. The final segmentation is 

refined using a superpixel-level dense conditional random field. 

The proposed solution is evaluated on the Cityscapes 

segmentation benchmark and achieves competitive results at 

low computational costs. It is the first boosting based solution 

that is able to keep up with the performance of deep learning 

based approaches. 

I. INTRODUCTION 

Semantic segmentation is the task of pixel-wise image 
labeling with semantic classes. It provides a high-level 
representation for an image and can have a significant role in 
the semantic perception and understanding of the 
environment by intelligent vehicles. High accuracy and 
precision are crucial for enabling advanced driver assistance 
or autonomous driving. This has to be achieved at low 
computational costs for real-time use. 

The state of art on semantic segmentation is rapidly 
evolving. Due to the recent advances in deep learning, 
current benchmarks are dominated by approaches that use 
convolutional neural networks to learn feature representations 
directly from raw RGB data and also to provide pixel level 
multiclass predictions. Unfortunately, most approaches have 
high execution times and hardware requirements, and only 
few of them are practical for real-time applications [1] [2] 
[3]. 

Most intelligent vehicles are equipped with laser scanners 
or stereo cameras in order to achieve a more powerful 
perception that also uses depth. The Cityscapes dataset [4] is 
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currently one of the most active segmentation benchmarks 
and enables the use of depth data by providing stereo image 
pairs and precomputed disparity images. Currently, from the 
40 evaluated solutions, there are only two solutions that use 
depth data [5] and [6]. Earlier boosting based solution were 
capable of handling a large variety of features consisting of 
color, edge, texture or depth features [7] [8], but these are 
outperformed by RGB input only deep convolutional 
networks on the CamVid segmentation benchmark [9]. 

In this work we propose a fast boosting based approach 
using low, intermediate and high order features from color 
and depth modalities. The boosting scheme enables easy 
integration of different feature types that can be handcrafted 
or learning based. Being the first boosting based solution that 
is capable of keeping up with the robustness of deep learning 
based solutions, we hope to encourage research also into this 
direction. The main contributions of this paper consist of: 

 Multimodal and multi order image channels: 

o Low level: multimodal and multiresolution filtered
image channels 

o Intermediate level: deep convolutional channels

o High level: spatial, geometric and semantic channels

 Pyramidal context channels 

 Simplified multi-range classification features 

 Semantic context from pre-segmentation 

 Optimized boosting classification scheme 

II. RELATED WORKS

Extensive research has been carried out in the field of 
semantic segmentation, by exploring a variety of features and 
classification schemes. The availability of segmentation 
benchmarks such as PASCAL VOC [10], CamVid [9], 
SYNTHIA [11], Cityscapes [4] have a significant impact on 
the evolution of segmentation approaches and enable the 
analysis and better understanding of key factors for achieving 
more robust segmentations. The Cityscapes dataset is 
currently the most challenging benchmark considering that it 
consists of video sequences captured in traffic environments 
from 50 different cities. 5000 images were fully annotated 
and 25000 images were only coarsely annotated using 19 
semantic classes. The size and quality of training data is a 
crucial factor for achieving robust results. 

One of the first baseline solutions was the Texton-boost 
approach proposed by Shotton et al. in [7]. Segmentation was 
achieved using a boosting based classification scheme over 
color and texton features, and Conditional Random Field 
(CRF) based refinement. Further improvements were 
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achieved using more complex CRFs, such as hierarchical 
CRFs [12] or dense CRFs [13]. 

Baseline features were improved by Ros et al. using a 
global color transfer strategy [14] to address illumination 
changes during daytime or between the training and test 
dataset. The 2D color and texture features have been 
extended by 3D depth features from structure from motion 
[15] and dense stereo reconstruction [8] [16]. Cordts et al. 
proposed encode-and-classify trees at pixel level and a multi-
cue segmentation tree at the superpixel level in [17], 
achieving real-time segmentation due to the low 
computational costs. The employed cues included color, 
texture, depth, motion and object detection. Fast execution 
times have been achieved also by using Wordchannel 
features [18] and multiresolution filtered channel features 
[19], adopting a boosting classification scheme from sliding 
window type pedestrian detection. 

Due to the recent advances of deep learning networks in 
image classification the current state of art is dominated by 
convolutional neural network (CNN) based solutions also in 
the field of semantic segmentation. The fully connected layer 
from image classification was replaced by the convolutional 
layer, resulting in fully convolutional networks (FCNs) [20]. 
FCNs enabled end-to-end training and became a popular 
choice for segmentation approaches. Dilated convolutions 
were introduced in [21] in order to enhance the receptive 
field of different layers. To address the low resolution 
prediction of FCNs the DeepLab-CRF [22] approach 
introduced the atrous convolution and was further extended 
by CRF-RNN [23] employing recurrent layers. A different 
strategy was employed in [24] relying on a multi-resolution 
architecture based on a Laplacian pyramid. 

Unfortunately, the drastic improvement of segmentation 
robustness by deep CNN based solutions comes with a high 

computational cost. Most approaches have an execution time 
of multiple seconds for a single image or the time is not 
reported at all. Solutions such as [1], [2] or [3] are 
outperformed by the current top performing approaches, but 
these are the only approaches that managed to reduce 
computational costs for real-time applications. 

There is a high necessity to explore ways to improve 
results at low computational costs. In this work we introduce 
the first boosting based solution that is capable of keeping up 
with deep learning based solutions and show that boosting 
can be a powerful tool for fusing a large variety of features 
types. 

III. PROPOSED SOLUTION OVERVIEW

Multiple key concepts are introduced in order to achieve 
robust segmentation at low computational costs. The solution 
takes advantage of both color and depth perception. Depth is 
perceived using stereo reconstruction. Multimodal features 
are captured at three different levels  low, intermediate and 
high level  and are computed in the form of image channels. 
The feature channels are extended by pyramidal context 
channels, capturing context at multiple scales. To achieve 
semantic segmentation superpixels are classified based on 
multi-range channel features and pyramidal context features 
using boosted decision trees. 

A smaller scale of this classification scheme, trained on a 
different training subset, is used to achieve a presegmentation 
of the input. The presegmentation is decomposed into higher 
order semantic channels and is used as input for the final 
segmentation. 

The final segmentation is refined using a dense 
Conditional Random Field (CRF) defined at superpixel-level. 
An overview of the proposed solution is illustrated in Fig. 1. 

Figure 1. System overview 
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IV. MULTI-LEVEL FEATURES

 In the following, we define the employed multimodal 
and multi-level image features. The computed features are 
stored in the form of image channels and the classification 
features will be sampled from these channels. The boosting 
classification scheme has the task of fusing these different 
order features for achieving a robust segmentation. For each 
feature type we also focus on reducing computational costs. 

A. Low level features 

As low level features we consider features that capture 
basic color, texture or edge information. These pixel level 
features consider only a small neighborhood of surrounding 
pixels resulting in a small receptive field. In order to capture 
edges at multiple scales and multiple orientations, we employ 
the fast multiresolution filtering scheme proposed in our 
previous work [25]. In this work we extend the filtering 
scheme also with depth data. In previous works that 
employed depth data [15] [8] [16], depth was mostly used as 
a source for 3D spatial context for semantic pixel 
classification. Dense depth data can be a significant source 
also for object boundaries and structure elements, considering 
that it is invariant to texture, as seen in Fig. 2. The 
multimodal multiresolution filtered channels will represent a 
pool of basic building blocks for learning more complex 
structures by the boosted decision trees. 

In the case of color modality, we compute 10 image 
channels consisting of LUV color channels, gradient 
magnitude and the magnitude at 6 orientations (HOG). These 
channels are filtered iteratively using a 3 × 3 box filter as a 
low-pass filter to achieve features at multiple scales. The 
resulting channels are high-pass filtered using simple vertical 
and horizontal differences in order to capture high frequency 
edge elements at multiple scales and orientations. 

In the case of depth modality we use the dense disparity 
image as the source for gradient magnitude and orientation 
channels, resulting in 8 channels. These channels are also 

filtered using the low-pass and high-pass filtering scheme. 

In order to have a lower number of filtered channels, we 
use only 4 filtering scales, resulting in one low-pass and two 
high pass filtered channels at each scale of the 10 color and 8 
depth input channels (a total of 216 filtered channels). Due to 
the computational simplicity of the filtering scheme, all 
channels can be computed in less than 2 ms for a 1024 × 512 
pixel image using a GPU implementation. 

B. Intermediate level features 

As intermediate features we consider larger structures or 
components that build up the objects that have to be 
recognized. Deep CNNs are particularly good at learning 
complex structures in a hierarchical manner. Zeiler and 
Fergus provide an analysis in [26] and also illustrate the 
features that are learnt by the different layers of a deep CNN. 
The first layers learn basic edge and color features while the 
upper layers learn more and more complex features having 
also larger receptive fields. Yang et. al proposed in [27] the 
use of boosted decision trees over convolutional channel 
features for pedestrian sliding window classification. 
Extensive experiments have been done in evaluating different 
deep net architectures and the layers of each net. The best 
results were achieved using traditional LUV + HOG image 
channels together with the last 512 convolutional filters of the 
4th layer of the ImageNet pretrained VGG16 net [28]. 
Interestingly, the use of higher layers reduced detection 
robustness, concluding that the boosting based classification 
and feature pooling scheme is more efficient at combining 
intermediate level features. Due to the necessity of 
recomputing image features for mutliscale detection, the 
execution time of the approach was of 13 seconds for an 
image. 

In the case of semantic segmentation, deep CNNs are 
usually applied at a single scale. The computation of the 512 
convolutional filtering results of the 4th convolutional layer 
group (conv4_3) of VGG16 is achieved in around 50 ms 
using a GPU for an image of 1024 x 512 pixels. In this work 
we propose the extension of multimodal multiresolution 

Figure 2. Color and depth (disparity) gradient. 

Figure 3.VGG16 Deep CNN convolutional kernel response examples from the 512 conv4_3 filters 
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filtered channels with deep convolutional filtered channels 
that were pretrained on the largescale ImageNet dataset [29]. 
The downsampling ratio of the additional channels is of 8, 
resulting in channels of 128 × 64 pixels. 

C. High level features 

The high level features enable reasoning over the 2D 
spatial, 3D spatial, 3D geometry and semantic context during 
the semantic classification of pixels. These features are 
encoded as normalized values in image channels and the 
boosted decision trees can learn different constraints over 
these values for different classes. 

In our previous work [19], we employed 2D spatial 
context channels to permit the learning of the 2D context for 
different classes. These channels consist of vertical, 
horizontal and symmetric-horizontal channels and represent 
normalized 2D image coordinates at each pixel position. For 
example, the vertical channel represents the normalized 2D 
vertical coordinate. As an example, the boosting classifier 
can learn that the road pixels tend to have a high value in this 
channel, being closer to the bottom of the image. Similarly, 
the 3D context can be learnt using 3D spatial channels 
representing the normalized X, Y and Z 3D coordinates. 
These channels are illustrated in Fig. 4. 

In this work we propose the use of geometric channels. 
We apply a grouping over superpixels to identify cohesive 
structures and determine the height, width and size of each 
such structure. We integrate this information in the form of 
normalized values in image channels in order to allow 
boosting classifiers to learn the geometric constraints of 
different classes. For example, it is difficult to differentiate a 
car from a truck at pixel level, but if the 3D height channel 
tells that the pixel is part of an object that has a height of over 
2 meters, then the probability of a truck will be much higher. 

To identify cohesive structures, first we segment the 
image into 16000 superpixels. This allows us to capture 
narrow structures, such as light poles or traffic lights. Using 
an approximation of the SLIC [30] segmentation approach 
and GPU implementation, the segmentation is achieved in 
around 2.5 ms. We use superpixel-level region growing to 
identify cohesive structures. Two superpixels are merged if 
the absolute difference in 3D (on the longitudinal axis) is less 
than 2.5% of the distance to camera. A relative threshold is 
used due to the decrease of depth precision with distance. We 
ignore superpixels that have a height above ground of less 
than 0.5 meters and ignore clusters with a size of only 1 or 2 
superpixels. Finally, we determine the height, width and area 
for each group. These properties are encoded as normalized 
values in the form of image channels, called geometric 
channels. This way we enable boosting classifiers to take into 
consideration the 3D size of the objects for pixel level 
classification. 

When applying region growing, an object can be easily 
merged with background if there is a single superpixel with 
erroneous 3D data next to the whole object boundary (which 
can be a large region). To enable at least the partial extraction 
of objects for difficult cases, we also generate groupings that 
are limited to only vertical or horizontal merging. In the case 
of vertical merging the representation is similar to the Stixel 
representation used in [31]. In the case of vertical merging 
we generate a geometric channel representing the 3D height 
of each group and in the case of horizontal merging the 3D 
width. We generate additional channels where the grouping 
size is determined by the number of pixels, instead of 3D 
size, to enable the perception of regions where depth 
reconstruction is missing or is not reliable. Example 
illustrations of geometric channels are provided in Fig. 4. The 
high level feature channels are computed in less than 1 ms. 

Figure 4. 2D spatial, 3D spatial and 3D geometric channels. 
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V. PYRAMIDAL CONTEXT CHANNELS 

Context has been proved to be an important factor for 
achieving robust segmentation in several works [32] [33] 
[34]. The context can be determined at multiple levels of 
larger and larger pixel neighborhoods. In the case of global 
context, the whole image is considered. As shown in [34], 
simple average pooling over larger regions from deep 
convolutional filter outputs can provide a significant 
contextual boost. 

In this work we propose the partitioning of the feature 
channels, described in the previous section, into multi-level 
pyramid cells as illustrated in Fig. 6. Similar partitions, called 
spatial pyramids [35], are used frequently in the context of 
bag of features based image classification. The largest cell 
includes the whole image and represents the first layer. The 
second layer partitions the first cell into two square cells. 
From this layer on, the next layer is achieved by partitioning 
into cells that are two times smaller. We compute the average 
value for each cell in each image channel, to generate 
classification features, resulting in the pyramidal context 
channels. For computational efficiency, we use 8 levels for 
low level and high level feature types, and 5 levels for the 
intermediate, convolutional channels (due to the smaller 
resolution). In the case of smoothed filtered channels and 2D 
spatial channels the average values do not provide additional 
information and the context pyramid is not computed. 

VI. CLASSIFICATION

In the following we define a classification scheme that 
can be used for the semantic classification of an individual 
pixel. Multiclass semantic segmentation is achieved by 
training individual binary classifiers for each class.  

A. Multi-range classification features 

We use the feature channels described in Section IV to 
generate classification features. A pixel is classified based on 
the channel values of the pixel neighborhood. The relevant 
region can be large due to the variety of semantic classes and 
object sizes, resulting in a high number of potential 
classification features. In our previous work [19] we 
proposed the use of multi-range features. The classification 
features were sampled in a grid-wise manner from feature 
channels using grids of 13 x 13 pixel locations. Four grids 
were considered using different pixel step rates, covering 
four different pixel ranges. The denser near range was 
responsible for capturing local structure while the sparser far 
ranges were responsible for capturing the context. 

In this work we opt for a simpler grid of classification 
features. Instead of sampling the features in a grid-wise 
manner from the rectangular regions of interest, we sample 
only horizontally and vertically, as illustrated in Fig. 6. This 
way, the number of potential features is reduced by an order 
of magnitude and there is only a small decrease in 
classification performance, as shown in the experimental 
results section. The main advantage is that we are able to use 
more training samples (limited by memory), which has a 
larger impact on classification performance. In our 
experiments we sample the classification features for training 
using a one dimensional vertical and a one dimensional 
horizontal grid of 7 samples with step rates of 2, 8 and 32 

pixels. The 3 grids have different ranges: short range - 14 
pixels; middle range - 52 pixels; long range - 208 pixels. In 
case of samples that would be located outside the image 
bounds (for pixels close to the margins) we take the closest 
computed location. To further reduce the number of features, 
we ignore the long range features in the case of low level 
feature channels (due to the focus on local structure) and the 
short range features in the case of intermediate, convolutional 
channels (due to the downsampled channels  size). 

B. Contextual classification features 

Another type of classification features is extracted from 
the pyramidal context channels. The pixel that has to be 
classified is associated to each pyramid cell it belongs to. 
Each image feature channel and each pyramid level results in 
a single classification feature representing the average 
channel value of the pyramid cell. The highest level 
represents the global average of the whole channel, while the 
lowest level represents the average of the smallest cell. Five 
classification features are obtained in the case of intermediate 
deep convolutional channels and eight in the case of other 
channels. 

Figure 6. Multi-range classification feature sampling using three ranges 

Figure 5. First four levels of the context pyramid and the cells associated

to a pixel location. The average value is computed as feature for each cell. 
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C. Classifier training 

We train a binary boosting classifier for each individual 
semantic class. For each class we use 400000 training 
samples, consisting of 100000 positive samples and 300000 
negative samples. The number of samples is limited only by 
the available memory. The training instances are sampled 
randomly from the whole training database based on the 
ground truth segmentation. In the case of negative samples, 
we use an equal number of samples for each negative class. 
This way, we avoid having too few negative samples for 
semantic classes that are underrepresented in the training set. 

For training robust boosting classifiers, we follow the 
insights from boosting based pedestrian sliding window 
classification [25]. A boosting classifier is trained consisting 
of 2048 boosted 7 level decision trees. The number of levels 
is increased due to the higher number of training samples. 
Only a random subset of 1% is considered from all 
classification features when training the decision stump 
nodes of the decision trees resulting in a significant 
acceleration of the training process. This also reduces 
overfitting and has a minimal effect on classification 
performance. 

D. Semantic segmentation 

Training multiple binary boosting classifiers enables 
multi-class semantic classification of individual pixels. To 
reduce the number of necessary classifications for a full 
image segmentation, we classify only the center pixel of each 
superpixel. The class with the highest prediction score.is 
selected and the prediction is retained at superpixel level. 

We do a simple classifier calibration in order to decrease 
the false positive and false negative rate of each class. The 
addition of an offset to the prediction score of a class 
increases false positive rate and decreases false negative rate, 
while the subtraction has the opposite effect. We find the 

offset for each class using binary search. The offsets assure 
an equal false negative and false positive rate on a validation 
set. In this case the class accuracy and precision is equal. 

The boosting classifiers of the semantic classes are 
evaluated in a sequential order. We use a validation set to 
learn minimum and maximum prediction score thresholds. 
The evaluation of the boosted decision trees is halted if the 
prediction score drops below the minimum threshold or 
increases above the maximum, resulting in faster prediction 
without affecting the classification accuracy. 

Several approaches apply CRF based refinement [13] [5] 
[22] in order to achieve a more robust and smoother 
segmentation. Similarly, to our previous work [19], we use a 
dense CRF defined at superpixel level to infer the final 
segmentation. Due to the employment at superpixel level, 
dense CRF inference improves the segmentation at low 
computational costs. 

VII. SEGMENTATION FEEDBACK

In this work, we propose the computation of an initial 
segmentation and use this to refine the final segmentation. 
For training the boosting based classifiers for the pre-
segmentation module, we employ a smaller individual 
training dataset. In the case of Cityscapes dataset, we use the 
training sequences from the first three cities (Aachen, 
Bochum and Bremen), consisting of 586 annotated images. 
These images are excluded from the training set of the final 
classifier, in order to avoid overfitting to training data. We 
follow the training protocol described in the previous section. 
Due to the smaller training size, we use four times fewer 
training samples and train 512 boosted 5-level decision trees 
for each semantic class. To reduce computational costs, we 
classify only each 16th pixel (2048 classifications) instead of 
each superpixel. As will be shown in the experimental 
results, the pre-segmentation module is able to provide 

Figure 7. Semantic segmentation results using pre-segmentation and CRF refinement. 
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relatively good performances, considering the size of the 
training set and the subsampled prediction. 

We use the pre-segmentation module to generate the 
prediction of each individual semantic class and store it in the 
form of semantic channels. These semantic channels are 
integrated into the final segmentation module in the form of 
additional high level feature channels. The final boosting 
classifiers have the ability to take into consideration the pre-
classification and the semantic context of each pixel. Pre-
segmentation and final CRF-refined segmentation is 
illustrated in Fig. 7. 

VIII. EXPERIMENTS

In order to evaluate the performance of the proposed 
solution we consider the Cityscapes [4] traffic scene 
segmentation dataset, being currently one of the most 
challenging and most active benchmarks. The segmentation 
performance can be evaluated on 19 semantic classes or 7 
semantic categories. The standard Jaccard Index, also known 
as intersection-over-union (IoU), is used as main evaluation 
metric. The IoU is computed for each individual class or 
category and the mean value is reported. 

First, we evaluate iteratively the contribution in 
performance of the individual feature types. We train only the 
7 category classifiers and use only each 5th training image, 
due to the necessity of retraining the classifiers for each class 
and each configuration. We evaluate the mean IoU and mean 
accuracy at category level, and the global pixel classification 
accuracy. The evaluation is done on the standard validation 
set. In Table I we show the segmentation performance after 
adding iteratively the multi-level multi-range features and 
pyramidal context features. Then, we show the performance 
of the pre-segmentation module and the final segmentation 
using also semantic channels. It can be seen that each feature 
type provides an important boot in performance.  

In Table II we illustrate the advantage of using the 
proposed vertical and horizontal-only multi-range features. 
First, we show the performance for using 2D grid multi-range 
features and using 25000 positive and 75000 negative 
samples for training each semantic classifier. Retraining the 
classifiers using the same training samples, but employing 
1D grid multi-range features, provides only slightly lower 
results. Due to the lower number of classification features, 
we can use more training samples and achieve better results 
with the same training memory requirement. 

Finally, we train a classifier for each of the 19 classes 
using all proposed features. We also use the extended training 
set (with coarse annotation), but we sample only 300 
additional images for each of the 6 classes with the lowest 
number of training samples. In Table III, we provide a 
comparison with the current state of art based on mean class-
IoU, category-IoU and execution time (only published works 
with available execution time are shown). The proposed 
solution is the first boosting based approach that provides 
competitive results. In Table IV we provide the IoU for each 
class. Additional details are available on the Cityscapes 
benchmark webpage (MultiBoost approach). 

The training of a boosting classifier for a single class 
takes around 30 minutes with an i7-5960x CPU. The 

execution time for semantic segmentation with 19 classes is 
around 240 ms using an NVidia GTX 980Ti GPU.  Feature 
computation takes around 60 ms, pre-classification 30 ms, 
final segmentation 120 and superpixel-level CRF 30 ms. The 
solution can be easily adapted for real-time applications. 

IX. CONCLUSION

In this paper we introduced a novel boosting based 
solution for semantic segmentation of traffic scenarios. It 
relies on multiple key features that enable robust 
segmentation at low computational costs. Multisensorial 
perception is exploited by computing low-level and high 
level features from color and depth modalities. These features 
are further enhanced by intermediate level deep 
convolutional channel features and high level semantic 
channels obtained from a pre-segmentation. The semantic 
classification of superpixels is achieved by boosting 
classifiers employing multi-range channel features and 
pyramidal context features.  

TABLE I.   SEGMENTATION PERFORMANCE USING DIFFERENT FEATURES 

TABLE II.   MULTI-RANGE FEATURE GRID TYPE  EVALUATION 

TABLE III.   CITYSCAPES TEST SET RESULTS: COMPARISON 
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The proposed solution is evaluated on the Cityscapes 
segmentation benchmark and achieves competitive results in 
comparison with deep learning based solutions. We show that 
although deep learning approaches may dominate the field, 
boosting based channel feature classification can be a 
powerful tool in the context of real-time applications, 
enabling novel improvement possibilities. 
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