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Abstract— We propose a new real-time depth upsampling
method based on convolutional neural networks (CNNs) that
uses the local context provided by semantic information. Two
solutions based on convolutional networks are introduced,
modeled according to the level of sparsity given by the depth
sensor. While first CNN upsamples data from a partial-dense
input, the second one uses dilated convolutions as means to
cope with sparse inputs from cost-effective depth sensors.
Experiments over data extracted from Kitti dataset highlight
the performance of our methods while running in real-time (11
ms for the first case and 17 ms for the second) on a regular
GPU.

I. INTRODUCTION

Depth perception is a key aspect in autonomous driving.
Stereo reconstruction is the traditional method for depth
measurement providing very accurate solutions at relatively
low cost. Due to the apparition of LiDAR (Light Detection
and Ranging), a more robust and trustworthy sensor, the
ubiquitous usage of stereo has gradually decreased. Although
extremely accurate for depth measurements, LiDAR has the
disadvantage of being more expensive and of giving sparse
results.

With the increased prosperity of deep learning, convolu-
tional neural networks have been employed for depth map
enhancement. CNNs enable methods dealing with stereo cost
computation [1], optimization [2], post-processing [3], end-
to-end stereo [4] [5], LiDAR-based depth upsampling [6] [7]
or even single image depth estimation [8].

According to their completeness [9], depth maps have been
classified as:
• Sparse – Generated by a cost-effective (4-ray or 16-ray)

LiDAR, or by a feature-based reconstruction system
[10]. These methods provide quite few, but extremely
reliable depth points;

• Partial-Dense (Semi-Dense) – Generated by a 64-ray,
128-ray LIDAR sensor or by a low resolution stereo
reconstruction method. Although still being sparse, the
final depth map given by these method has an improved
structure, image objects being better delimited one from
another;

• Full-Dense – Generated by either a very accurate stereo
reconstruction method [1], by means of tracking and
fusion of multiple images, or by structured-light systems
(eg. Microsoft Kinect). Such methods produce a value
for each pixel in the depth image.
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We tackle here the problem of depth image upsampling
by using convolutional neural networks as mechanisms to
densify depth maps with low resolution. A CNN-based
upsampling method that directly converts from sparse to
full dense might lead to less robust or too dateset-dependent
results. Therefore we split the upsampling problem in two
more feasible tasks, proposing two upsampling solutions.
Both methods take advantage of the information provided
by (i) the RGB image and (ii) semantic segmentation of
the RGB image. The two methods can upsample the depth
image:
• From Partial-Dense to Full-Dense. We propose a CNN

architecture that receives simultaneously the depth,
RGB and the semantic maps; it extracts the most
relevant information from each particular feature map
and it combines this data generating an improved depth
image;

• From Sparse to Partial-Dense. We rely on a similar
convolutional network that additionally uses dilated
convolutions to deal with the lack of structure found
in very sparse depth images.

The paper starts with presenting the state of the art in depth
upsampling and semantic segmentation-based depth genera-
tion solutions. Next section describes the proposed ConvNet-
based partial-dense to full-dense architecture. Moreover, it
describes the required datasets along with parameters and
other training details. In section 4 we discuss the particu-
lar enhancements we propose when creating the sparse to
partial-dense CNN architecture. Section 5 presents a thor-
ough evaluation of the improvements given by our methods
in driving scenarios. Finally, we conclude the paper in section
6.

II. RELATED WORK
A. Depth densification methods

The problem of depth upsampling was initially studied in
the context of sparse stereo reconstruction. The authors of
[11] propose a method to increase the resolution of disparity
maps by incorporating prior disparity knowledge into their
current frame that consists in only very reliable points.

Classic approaches that deal with small depth inconsis-
tencies (partial-dense to dense category) generally apply
(edge-aware) filtering techniques such as median filters [12],
bilateral [13] [14] or guided [15]. An edge-aware deep
learning-based guided filter is proposed by [16]. The method
introduces a convolutional neural network that enhances
a target image by using priors extracted from its RGB
counterpart.



For sparser depths, upsampling methods also rely on RGB
images, using them as guides for better scene understanding.
For instance, the method presented in [17] relies on the
cosparse analysis models and makes use of analytic oper-
ators, requiring no training data.

B. Improving depth perception by semantic segmentation

Several methods that rely on image segmentation to im-
prove depth accuracy have been developed during the last
years [18] [19]. Stereo reconstruction has been combined
with segmentation to increase disparity accuracy either in
the post-processing step [20], [19] or by using semantic info
as a guide for better matching [21].

In the context of high resolution depth image generation,
LiDAR sensors also benefit from semantic information [22].
In their paper [6] the authors use the semantic map as a guide
that provides both local context and edge information. Our
method resembles this approach, but instead of formulating
the upsampling problem as a global energy minimization, we
choose to directly improve resolution by deep learning.

III. PARTIAL-DENSE TO DENSE

A. Problem formulation

Let D1 ∈ Rh×w be a depth map having n = h × w
entries and assume that m � n pixels are known. D1 is
obtained after the transformation from the real to the camera
coordinate system and then to the image plane using the
calibration matrix. Therefore, it is aligned with I - RGB and
S - semantic images. The main goal is to compute a higher
resolution map D2, in which m′ pixels are known, where
m′ ≈ n.

In contrast to methods that rely on particular stereo cam-
era/LiDAR set-ups, the m depth values can be computed by
any method. However, depending on the relation between m
and n, we can separate the upsampling problem in two:
• from sparse unstructured data to dense
• from sparse structured data to dense
In the case of upsampling data from partial-dense to dense

case, m > 1/2×n, so more than half of the pixels are known
from sensor measurements. This is quite important, because
with such a resolution we can rely on depth image structure.

We need a solution of estimating the k = m′−m of the un-
sampled positions in D1. One of the major difficulties for this
estimation is to compute the correct depth around boundaries
regions (edges). For this purpose, besides intensity values we
rely on semantic information to provide relevant boundary
information.

B. Semantic segmentation of the image

In order to acquire relevant object infromation, a first step
in our solution is to compute a semantic segmentation of the
scene. Classic segmentation methods have been combined
with depth image correction [19], generally being used as a
post-processing [18]. However, we can now take advantage
from the boost that semantic segmentation lately received
with the introduction of deep neural networks. Cityscapes

dataset [23] enables methods such as [24], [25] or [26] to
accurately classify object categories at pixel level.

One of the most robust approaches in semantic segmen-
tation is Erf-NET [27], having one of the best trade-offs in
terms of accuracy (69.7 for IoU) vs speed (around 25 ms).
The method uses an encoder-decoder architecture, with 23
layer blocks. The key for speed and precision is their novel
layer block – a mixture of residual connections and factorized
convolutions that preserves the structure in the image and
reduces computational costs. The method classifies the scene
into 19 foreground and background classes.

C. Dataset generation

Since we try to optimize the problem by means of machine
learning, a reliable dataset is extremely important. The main
prerequisites for the training set are:

1) RGB images for semantic segmentation with driving
scenarios

2) sparse depth image acquired either from stereo (need
left and right images) or from LiDAR

3) dense accurate depth ground truth
Although Kitti 2015 stereo dataset [28] is adequate for

the first two needs, the GT it provides is sparse (given by
LIDAR). DispNetC [4] provides the dense GT we need,
but its synthetic nature reduces the inherent difficulties
found in real situations (eg. unexpected illumination, scene
complexity). A different option is to choose the disparity
obtained with a top stereo method (MC-CNN acrt [1]) as
our dense ground truth. While this method has a low error
rate on the evaluated Kitti pixels, it is adapted to real-life
situations. We choose a mixture of these two (60% of images
from Kitti and 40% images from DispNetC), benefiting from
both pixel-wise accurate ground truths and real-life driving
scenarios. We further extract patches at various positions
and randomly generate around 200.000 patches, with RGB,
semantic information, sparse depth and dense depth.

D. CNN Architecture

For the learning-based upsampling we employ a 3-input
ConvNet architecture (Fig. 1) that follows the principles of
the guided filter proposed by [16].

The first part of the network consists in two similar
branches, with the role of extracting reliable features from
both depth and RGB image. A 41x41 patch from the Left
RGB image is the input to the first branch, while a patch from
the incomplete depth map is plugged in to the second one.
Each branch consists of three residual Non-bottleneck1D
blocks, followed by a Batch Normalization layer. The first
block contains 64 feature maps, the second 128, while the
third produces just one feature map, that incorporates the
most relevant features extracted from each branch.

The convolution layers are designed using the speed-up
techniques presented in [27]. A Non-Bottleneck1D (Fig. 2)
block is therefore shaped by:
• Residual connections – important information extracted

from initial layers is preserved throughout the entire
network so that later layers can benefit from it;
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Fig. 1: Architecture of the Proposed Partial-Dense to Dense
Upsampling
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Fig. 2: Non-bottleneck1D block having a receptive field size
of 5x5

• 2D convolution layers approximated by two 1D convo-
lutions – this trick reduces the number of convolution
weights by more than a half while preserving stability
and accuracy;

• ReLU units inserted after each convolution – used to
zero the gradients on negative input values.

Exhaustive testing showed us that RGB features are not
enough to provide effective guidance. This problem is mainly
caused by the mixture and the variety of information RGB
maps carry. Although the first part of the network tends to
extract more effective features and provides relevant informa-
tion, we consider useful to aid this process with an additional
term. Therefore results of the two branches are also concate-
nated with a patch extracted from the segmentation image.
The semantic segmentation map is the third set of important
features for our network, containing information about object
boundaries and linking together similar structures.

The second part of the network consists in two additional
Non-Bottleneck-1D blocks, interleaved by a layer of 1x1
convolutions. The role of the second part is to join together
the three maps and generate a more reliable depth image,

simulating a non-linear regression. This way we will inte-
grate the knowledge extracted from the three aforementioned
feature maps. Numerically, a pixel-wise mean squared error
is computed between the resulting upsampled depth patch
and the ground truth, thus estimating the degree of conver-
gence for our method.

E. Parameters and Training Details

All patches are normalized by subtracting the mean and
dividing with the maximum image intensity. Similar learning
rates have been given to both depth and image branches.
Experimental testing showed that our network converged
only when the segmentation learning rate was set to 1/5 of the
learning rate for RGB and Depth. In other scenarios segmen-
tation features became too powerful, and depth information
was dropped. We tried two optimization methods: Stochastic
Gradient Descent and Adaptive Moment Estimation (Adam).
Adam seemed to properly control the learning so we chose
it as our optimizer.

We trained the network for 400 epochs, with a batch size
of 128, decreasing the learning rate with a factor of 0.1 at
the interval of 100 epochs.

IV. SPARSE TO SEMI-DENSE

A. Dataset generation

In the case of sparse to partial-dense upsampling, the
dataset is generated from the Kitti [29] raw dataset. The set
consists in RGB images, over which the semantic segmenta-
tion is applied. The set also contains 3D points obtained with
a 64-ray Lidar. We project the 3D points to the image plane
and further select only those points that fall inside our image
frame to generate the depth ground truth (semi-dense). For
each image we extract around 4000 points.

In order to generate sparse depth points we carefully
extract points from ground truth image, downsampling with
a rate of 4. Particularly, we want to emulate the results of
a 16-ray LiDAR. After projecting an entire row of LiDAR
points the downsampling method skips the following three
rows. An example of input and ground truth image can be
seen in Figure 6 b) and c).

To sum up, from each image we extract:
• a 61x61 sparse patch, simulating results given by a

16-ray LiDAR. Larger patches are required due to the
scattered depth pixels

• a patch with RGB intensities;
• a patch with semantic information;
• a groung truth partial dense patch, given by a 64-ray

LiDAR.

B. CNN Architecture

The sparse to partial-dense CNN architecture also consists
in several sub-networks joined together. Intensity and seman-
tic sub-networks will take the guiding images and extract two
feature maps. The main difference between this architecture
and the aforementioned one consists in the way the target
image is processed: instead of extracting only one feature
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Fig. 3: Dilated convolutions in context of upsampling; Left
- Regular convolution over sparse data; Right - Dilated
convolution over sparse data

map, we apply multiple convolutions, with various dilation
coefficients.

Figure 3 left presents a regular convolution, applied over
sparse data (with a sparsity rate of 1/4). Even with such a
high rate (for sparse images obtained form a 16-ray LiDAR
this rate can get to 1/100) it can be easily seen that more
than half of the weights are not required, covering only a
small part of the image. Larger convolutions might lead to
better image covering, but they will still suffer from the same
problem of memory waste.

Dilated convolutions have been initially proposed by [30]
in the context of semantic segmentation and proved to work
as ideal features extractors when various scales are required.
In our case (Figure 3 right), dilated convolution are enlarging
the receptive field of our convolutions, without increasing
the memory or computational load. Moreover, by mixing
semantic guidance with dilated convolutions, the shortcom-
ings of convolutions with large receptive fields around object
boundaries will be reduced.

Our architecture consists in three depth-related sub-
networks. Each sub-network applies dilated convolutions, in-
creasing the receptive field at each step. All convolution lay-
ers follow the same construction rules as Non-bottleneck1D
presented above, with the major difference of changing the
second pair of 3×1 and 1×3 convolutions for a pair of dilated
1D convolutions. Residual connections presented in each
Non-bottleneck1D ensures that the important information
extracted from initial layers is preserved throughout the
entire network.

Finally, all resulting feature maps are joint together and
passed to the non-linear regression sub-network for optimiza-
tion. The CNN architecture can be seen in Figure 4.

V. EVALUATION

A. Semi-dense to dense

The partial dense depth input consists in the ground truth
from Kitti2015 stereo method [28]. The input data consists
in LiDAR points projected from 11 consecutive frames. To
determine the percentage of erroneous depth points, we em-
ploy a threshold of three pixels and we compute the number
of misclassified pixels with respect to the aforementioned
ground truth.

1) Accuracy of Depth upsampling methods: For this part
we use the same depth generation method, and see how
our method behaves with respect to other approaches. We
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Fig. 4: CNN Architecture for Sparse to Partial-Dense Up-
sampling

TABLE I: Performance of various upsampling techniques for
Partial-Dense to Dense case

Method Error Speed Platform
Without 10.19% - -

Median filter [12] 9.37% 0.3 ms GPU (CUDA)
Bilateral filter [13] 9.22% 8 ms CPU (C++)
Guided filter [15] 9.07% 20 ms CPU (C++)
Fast bilateral [14] 9.17% 180 ms CPU (C++)

DeepJoint filter [16] 7.72% 100 ms GPU (Matlab)
Proposed 5.25% 11 ms GPU (CUDA)

chose some of the most commonly used upsampling filters:
median [12], bilateral [13], guided [15], fast bilateral [14]
and DeepJoint [16]. We implemented our own median and
fast bilateral filters and used the OpenCV implementations
for the bilateral and guided filters. DeepJoint filter has been
trained using images from Kitti2015 dataset. Our method
is shown to outperform its counterparts by a large margin
while maintaining a relatively low time consumption. This
evaluation also reveals the improvement we obtained (around
2.5% wrt the joint filter) by introducing the segmentation
map into the CNN. Table I shows numerical results. Visual
results can be seen in Figure 5 c) - d) for stereo and e)-f)
for LiDAR.

2) Accuracy obtained with our upsampling method when
changing the input depth estimation: We are interested to
see how our upsampling method behaves when the under-
lying depth estimation method is changed. We chose the



TABLE II: Accuracy of the upsampling when applied to
various depth construction methods

Method Error Error(+Upsampling)
Stereo: Census 57.27% 69.27%

Stereo: BM 30.89% 22.86%
Stereo: SGM 10.19% 5.25%

Stereo: MC-CNN fast 3.79% 3.23%
64-ray merged LiDAR 21.75% 10.65%

TABLE III: Performance of upsampling techniques in Sparse
to Partial-Dense case

Method Error Speed Platform
Without 75.14% - -

DeepJoint [16] 73.42% 100 ms GPU (Matlab)
Proposed, without dilation 77.72% 11 ms GPU (CUDA)

Proposed, without semantics 41.15% 14 ms GPU (CUDA)
Proposed, with dil+sem 18.84% 17 ms GPU (CUDA)

following depth generation methods as input to upsampling:
Stereo matching using Census, Stereo Block Matching (BM)
and Semi-Global Block Matching (SGBM) from OpenCV,
feature-based streo matching using convolutional neural net-
works – MC-CNN fast from [1] and 64-ray LiDAR – the
stereo GT from Kitti. For each of the stereo methods we
performed left-right consistency check, removing inconsis-
tent pixels to generate incomplete disparity maps. Due to the
locality of LiDAR points, we only tested the lower part of
the images. The densification network was trained only once,
with patches from a subset of Kitti and DispNetC images.

Since the goal for our first network is to deal only with
structured data, it can not cope with the large errors found
in Census-only case. Stereo solutions with an average error
rate can really benefit from our upsampling method, the error
largely decreasing for LiDAR and for Semi-Global Matching
[31]. On the other hand, stereo solutions with low error and
high resolution can only marginally gain from our solution,
since they use other approaches to deal with this problem.
Numerical results are shown in Table II.

B. Sparse to partial-dense

Since the methods we used for comparison in partial-dense
to dense case will not work (too few information), and (to
the best of our knowledge) there are no benchmarks for the
upsampling, we could only compare our architecture against
the results obtained with DeepJoint filter [16], against our
architecture without introducing any dilation in layers and
against our architecture without semantic information. This
experiment shows the importance of dilated convolutions –
upsampling methods without such layers behave poorly (this
can be seen even at training phase). For such a complex
problem as upsampling in sparse setting we show that out
proposed upsampling method is the best solution among the
tested ones, semantic information giving additional accuracy.
Figure 6 shows our densified depth image, together with the
given sparse data and ground truth. Numerical results can be
seen in Table III.

VI. CONCLUSIONS

Learning methods such as ConvNets are becoming more
and more popular in the depth measurement domain. We
present here two ConvNets for upsampling low resolution
depth images provided by either stereo or LiDAR sensors.
Both ConvNets use intensity and semantic information as
guidance. The initial convolutional architecture receives a
structured depth map and filters it to complete the measuring
information. Since depth information lacks structure in the
sparse case, we employ a new architecture for the sparse
to partial-dense case. The network uses multiple dilated
convolutions as basic means to cope with the unstructured
data. We performed multiple tests on different types of data
with best positive results for the proposed approach.

We intend to continue our work by developing other real-
time upsampling convolutional architectures that are capable
to directly infer the complete dense map from sparse data.
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