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Abstract— A new approach for the detection of the road 

surface and obstacles is presented. The high accuracy of the 

method allows the detection of traffic isles as distinct class. The 

3D data inferred from dense stereo are transformed into a 

rectangular Digital Elevation Map (DEM). Two classifiers are 

proposed: density-based and road surface-based. The density-

based obstacle classifier marks DEM cells as road or obstacles, 

using the density of 3D points as criterion. A quadratic road 

surface model is initially fitted, by a RANSAC approach, to the 

region in front of the ego vehicle. A region growing-like process 

refines this primary solution, driven by the 3D uncertainty model 

of the stereo sensor. A robust global solution for the road surface 

is obtained. The road surface is used for discrimination between 

road, traffic isle and obstacle points. Fusion and error filtering is 

performed on the results of the two classifiers. The proposed real-

time algorithm was evaluated in an urban scenario and can be 

used in complex applications, from collision avoidance to path 

planning. 

 
Index Terms—stereovision, digital elevation maps, road surface 

detection, obstacle detection 

I. INTRODUCTION 

rocessing 3D data from stereo (dense or sparse) is a 

challenging task. A robust processing approach can be of 

great value for various applications in urban driving assistance. 

There are two main approaches (discussed next, and detailed 

in sections V and VI), depending on the space where 

processing is performed: disparity space-based and 3D space-

based.  

Disparity space-based algorithms are more popular because 

they work directly with the result of stereo reconstruction: the 

disparity map. The “V-disparity” approach [1] is widely used 

to detect the road surface. It has some drawbacks: is not a 

natural way to represent 3D (Euclidian) data, it assumes the 

road is dominant along the image rows, and it can be sensitive 

to roll angle changes (the road profile becomes blurry and 
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harder to detect on the “V-disparity” image). One way to avoid 

this problem is by using a specialized vehicle with small roll 

variations [2]. An extended “V-disparity” approach is 

presented in [3], where the roll angle can be computed 

assuming the scene has a planar road surface and assuming the 

presence of high-gradient road features (edges). The "U-V-

disparity" concept, introduced in [4], is used to classify the 3D 

road scene into relative planar surfaces and to extract the 

features of roadside structures and obstacles. 

3D space-based algorithms are used for ego-pose estimation 

([5], [6]), lane and obstacle detection ([7], [8]), or path 

planning in unstructured environments ([9], [10], and [11]).  

Digital Elevation Maps (DEM) are also used to represent 

3D data from stereovision ([10] and [11]). A complex method 

for building the digital elevation map of a terrain (for a 

planetary rover) is proposed in [10]: local planar surfaces are 

used to filter the height of each DEM cell, and the stereo 

correlation confidence for each 3D point is included in the 

filtering process. In [11] the elevation map is built 

straightforward from the disparity map. The authors avoid 

using a 3D representation of the reconstructed points by 

projecting a vertical 3D line for each DEM cell onto the left, 

disparity, and right image. Based on these projections, the 

disparity of the point associated with the cell is selected and 

possible occlusions are detected.  

A new road and obstacle detection algorithm will be 

presented in this paper. It transforms the 3D dense data from 

stereovision into a digital elevation map (DEM). The 3D 

uncertainty of the stereo sensor is modeled for improving the 

detection. A RANSAC-approach, combined with region 

growing, is used for the detection of the road surface. 

Obstacles and traffic isles are detected by using the road 

surface and the density of 3D points (Fig. 1). A temporal 

persistence filtering is proposed in order to have a robust 

detection of traffic isles. 

 
Fig. 1. The output of the algorithm is projected onto the left image: road area 

with blue, obstacles with red and traffic isles with yellow. 
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This paper is organized as follows: section II presents an 

overview of the proposed algorithm and contributions; section 

III presents the mathematical support needed to model and fit 

the quadratic road surface; the main components of the 

algorithm are detailed in sections IV to VII; results, evaluation 

and failure cases are discussed in section VIII; and conclusions 

and future work in IX. 

II. OVERVIEW OF THE PROPOSED ALGORITHM AND 

CONTRIBUTIONS 

The road and obstacles detection algorithm (Fig. 2) 

presented in this paper takes as input dense 3D reconstructed 

points.  

A Digital Elevation Map (DEM) and two density maps are 

computed from the set of 3D points (section IV). In contrast to 

the raw set of 3D points, the DEM provides a compact 

representation (grid), with explicit connectivity between 

adjacent 3D locations (easy to access).  Furthermore, the set of 

3D road points is reduced about 3-5 times (for multiple 3D 

points in a DEM cell, only one height is stored). Thus, the 

DEM representation helps to achieve real-time processing. To 

exploit this representation, we propose the following main 

contributions: an obstacle detection algorithm based on the 

density of 3D points per DEM cell (as a measure of the local 

slope), a combination of RANSAC, region growing and least 

square fitting for the computation of the quadratic road 

surface, and the detection of traffic isles.  

A density-based algorithm for obstacle detection is 

proposed (section V): based on the density of 3D points, each 

DEM cell is classified as obstacle or road.  

 
Fig. 2. Overview of the proposed algorithm. 

The road surface is fitted, using a RANSAC approach, to a 

small patch in front of the ego vehicle. This primary surface is 

then refined through a region growing-like process. The 

robustness of the global road surface is insured in this way. 

Based on the road surface, DEM cells are classified as road, 

traffic isles or obstacles (section VI). Traffic isles (elevated 

surfaces parallel to the road, such as sidewalks) are detected as 

a distinct class, instead of being considered road inliers.  

The results of the density-based and of the road surface-

based classifiers are filtered and fused to obtain a robust result 

(section VII). The ego motion is used to validate traffic isles. 

The output of the algorithm is multiple: the quadratic 

surface of the road in parametric form, 3D points classified as 

road/traffic isles/obstacles, and cell clusters representing 

individual traffic isles or obstacles.  

III. THE QUADRATIC ROAD SURFACE MODEL 

The planar road model widely used can be less robust for 

obstacle/road separation, especially for the detection of road 

delimiters such as curbs (ex. border of a sidewalk). The road 

surface can present longitudinal and lateral curvatures, and the 

planar assumption cannot cope with these (vertical) curvatures 

(see figure 13 for results on real data). Even though the lateral 

curvature is small, it must be taken into account in order to 

detect small curbs of several centimeters in height (at least 

five). 

First, we will present how the surface is computed for a 

given set of 3D road points. Then, the region of road inliers is 

defined, as a function of the stereo configuration. 

A. Fitting the surface to a set of 3D points 

The following world reference frame is used: Z-axis 

represents the depth (longitudinal), Y-axis represents the 

height (vertical), and X-axis is the lateral offset. The origin is 

placed on the ground, at the center of the ego’s front bumper.  

We used a road model that allows quadratic variations of 

the height (Y) with the horizontal displacement and the depth. 

This limited model copes with normal driving on most urban 

roads. If a specific application needs more generality, it can be 

extended straightforward to cope with any orientation of the 

vehicle on the road surface (by adding the XZ term).  

Equation (1) shows the algebraic form of the road model, by 

defining the height value Y with respect to Z and X. 

 
2 2' 'Y a X a X b Z b Z c= − ⋅ − ⋅ − ⋅ − ⋅ − .      (1) 

Fitting the quadratic surface to a set of n 3D points involves 

minimizing an error function. The error function S represents 

the sum of squared errors along the height: 

( )
2

1

n

i i

i

S Y Y
=

= −∑ ,                (2) 

where Yi is the height of the 3D point i and 
iY  is the height 

of the surface at coordinates (Xi, Zi).  

Minimizing only along the Y-axis (instead of the surface 

normal) is common practice and provides enough accuracy. 

Even for curved roads, the normal of the surface is close to the 

Y-axis: for an extreme local slope of 20% (11.3 degrees), the 

residual of a 3D point along the vertical represents 98% of the 

residual along the normal. The computational complexity is 

highly reduced by avoiding minimization against the normal of 

the surface. 

By replacing (1) into (2), the function S is obtained, where 

the unknowns are a, a’, b, b’, and c: 
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2
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i

S Y a X a X b Z b Z c
=

= + ⋅ + ⋅ + ⋅ + ⋅ +∑ .  (3) 

For S to have a minimum value, its partial derivatives with 

respect to the unknowns must be 0. The following system of 

equations must be solved: 

0, 0, 0, 0, 0
' '

S S S S S

a a b b c

∂ ∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂ ∂
.     (4) 

After writing explicitly each equation, the system (4) 

becomes (matrix form): 

2 3 2
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2 2 3
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'

'
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X Z YX Z

S S S S S Sa

S S S S S Sa

S S S S S Sb

S S S S S Sb

S S S S n Sc

−    
     −    
     = −
    

−    
     −    

,  (5) 

Generically, each sum is computed as 

1

n

i

i

Sα α
=

=∑  (for 

example 

1

n

XZ i i

i

S X Z
=

= ⋅∑ ).            (6) 

If weights (w) are available for each point, then the 

following formulas can be applied: 

1

n

i i

i

S wα α
=

= ⋅∑  (for example 

1

n

XZ i i i

i

S w X Z
=

= ⋅ ⋅∑ ) . (7) 

System (5) has 5 linear equation and 5 unknowns, therefore 

solving it is a trivial algebra problem.  

This explicit way of minimization was preferred instead of 

the pseudo-inverse matrix method. It allows real time re-

computation (hundreds of times per frame) of the road surface 

during the surface-growing step, as it will be explained later in 

section VI.B.  

B. The 3D uncertainty from stereo. Road inliers and 

outliers 

The 3D (localization) uncertainty is caused by a low 

accuracy evaluation of the disparity values (from the dense 

stereo module) and is present along the projection ray of each 

3D point. The components of the 3D uncertainty along the Z-

axis and along the Y-axis, respectively Zerr and Yerr, must be 

computed in order to estimate the vertical interval for the 

inliers of the road surface.   

Let us consider a location P(XR, YR, ZR) on the road surface 

(the depth Z is measured from the camera, Fig. 3.b). A simple 

model for the uncertainty of the depth was proposed in [12] for 

a canonical stereo system. The depth uncertainty Zerr of P is 

modeled as a function (8) of the system’s parameters (baseline 

B and focal F, measured in pixels, are known from calibration) 

and of the disparity uncertainty Derr.  
2

R err
err

R err

Z D
Z

B F Z D

− ⋅
=

⋅ − ⋅
.            (8) 

We extended this model to compute the uncertainty Yerr of 

P, as in (9). H is the height of the camera in the world 

reference frame.  

( )R err

err

R

Y H Z
Y

Z

− ⋅
= .              (9) 

The maximum allowed vertical error for a point to be 

considered inlier is expressed as a function of Derr: 

   ( ) ( )err err errz err errY D Y Y Y Z tg α∆ = + = − ,   (10) 

where the surface slope in P is computed by deriving the 

surface equation (1) with respect to Z:  

 ( ) 2 ' Rtg b Z bα = − − .            (11)  

Estimating the disparity uncertainty Derr for each point is 

very difficult and time consuming. The road surface usually 

presents poor texture, corrupted by image Gaussian noise. 

Considering that the sub-pixel accuracy provided by the dense 

stereo matching is less reliable for the road surface, Derr is 

likely between -0.5 and +0.5 pixels. For future improvements, 

a matter worth investigating is the use of image regions with 

different Derr values. 

An unknown point PU at depth ZR and height YU is 

considered road inlier if it is placed between the lower (for 

Derr=-0.5) and the upper bounds (Derr=+0.5) for inliers. The 

bounds (Fig. 3.a) can also be increased by small amount ∆h 

(=2.5 cm) to compensate small road artifacts (bumps, leaves 

etc) at small depths. 

( 0.5) ( 0.5)R U RY Y h Y Y Y h+ ∆ − − ∆ < < + ∆ + + ∆ . (12) 

 

 
a. 

 
 b. 

Fig. 3. a. Lateral view (a slice from 3D with a constant value for the X 

coordinate) of the inliers (gray) region around a quadratic road. The ego 

position is shown (the ego size is over-scaled). b. The geometric construct 

used for computing the height uncertainty. 

Formulas presented in this section will be applied in the 

elevation map space (it is still a 3D space, but with discrete 

locations, and each cell can be described 3-dimensionally as 

the map coordinates and height). 



 4

IV. BUILDING THE DEM AND THE DENSITY MAPS 

A. Computing the DEM 

The DEM is represented as a rectangular grid (matrix) of 

cells, with the same aspect ratio as the 3D space of interest. 

The DEM is built using the instant 3D data provided by stereo 

([16]) for the current frame. A 3D space of interest (40 m x 13 

m from bird-eye view) in front of the car is considered. The 

longitudinal Z and lateral X coordinates of each 3D point are 

scaled into the DEM space. Each DEM cell will store the 

highest height of the 3D points contained within the cell. A 

cell has a size of 10 cm x 10 cm in the horizontal XZ world 

plane (it can be adapted to different sizes, depending on the 

application requirements). 

The world zero Y-level (road level at system calibration) is 

centered at 128 in the DEM for better visualization of the road 

and traffic isles heights. The height value is also scaled. Only 

heights around the road (1 m band) are displayed correctly in 

this paper due to a limited number of 256 gray values (Fig. 

4.b, heights outside this interval are displayed saturated either 

to 0 or 255).  

3D points higher than 2 meters from the ground (zero level 

from calibration) will not be stored because they are out of 

interest. For scenarios with extreme up-hills, the 2-meters 

interval can be measured relative to the road surface detected 

in the previous frame (between consecutive frames the road 

profile changes smoothly). Empty cells are marked and not 

used further. 
                                                 Z(depth) 

   
                                a.                                    b.                           c. 

Fig. 4. a. A common traffic scenario (top) and the disparity image (bottom), 

b. The DEM, empty cells are marked with color, c. The enhanced DEM, with 

improved connectivity along the depth. 

B. Improving the connectivity of the DEM road cells 

As seen in Fig. 4.b, the DEM presents poor connectivity 

between road points at far depths. Connectivity can be 

improved by propagating heights from each valid cell to 

adjacent empty cells, along the DEM column. The maximum 

propagation range is inversely related to the road depth 

resolution of the considered cell (if the cell is further away, its 

height data should be propagated to more adjacent empty cells, 

along the DEM column, to maintain connectivity).  

   
                                    a.                                                      b. 

Fig. 5. a. The projections, with sub-pixel accuracy, of the flat road patch 

(solid line trapezoid) and of an uphill road patch (dashed line trapezoid) onto 

the left image. b. The distribution of road points from the same image row 

have the same depth (the left DEM column) assuming an ideal depth 

recovery, but are practically scattered along the depth (the right DEM 

column). 

A DEM cell C covers a square (LxL) in the XZ plane, or a 

rectangle if the slope is not zero, of the 3D reference frame. 

The projection, with sub-pixel accuracy, of the square onto the 

left image is a trapezoid (Fig. 5.a, solid line) with height CH 

and average width CW, measured in pixels. The height CH 

indicates how many image rows contribute to the 3D points 

from the cell. When CH is below 1 then lack of connectivity 

might appear (empty cells along the depth).  

Height data from valid cells can be propagated to empty 

cells, along the DEM column (Fig. 4.d). The distance along a 

DEM column (Fig. 5.b), in cells, between two consecutive 

DEM cells with valid data is 1

HP C
−∆ = . For each empty DEM 

cell C1, the closest DEM cell C2 with valid data is selected, on 

the same DEM column. If the distance between C1 and C2 is 

less than ∆Ph (half of ∆P) then the value of C2 is copied into 

C1.  

This insures theoretically that all road DEM cells are filled 

with valid heights for a flat road surface (the XZ plane), even 

if the 3D reconstruction is ideal (road points from the same 

image row have the same depth, Fig. 5.b the left DEM 

column). With real images, the 3D road points from the same 

image row are spread along the true depth value (Fig. 5.b the 

right DEM column), so ∆P might actually be considered 

smaller (even divided by CW). However, we did not reduce it 

in order to insure connectivity also for down hills. For stereo 

configurations with small focal length, if CW drops below one 

from a certain depth, then ∆P can be even increased.  

Connectivity is needed for the step of surface growing 

(section VI.B). The propagated heights will insure a uniform 

distribution of height data along the depth when computing the 

road surface.  

C. Computing the density maps 

Two maps, related to the density of 3D points, are computed 

for each cell: expected road density map and average 

measured density map. These two features are used for fast 

discrimination between road and non-road features (Section 
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V). 

    
           a.                     b.                       c.                                  d. 

Fig. 6. a. The average measured density map (3D points/cell), in a logarithmic 

form, b. The road expected density map in a logarithmic form, c. The 

difference between the measured and the expected density maps: only 

positives values are shown (vertical scene items are brighter), d. The left 

image with the vertical scene items numbered. 

The expected road density of 3D points for a DEM cell C is 

the area of its trapezoidal image projection (Fig. 5. a). It can 

be approximated as: 

0( )Slope W Herd C C C= = .              (13) 

The expected density has a large range of values from about 

200 3D points/cell near the ego-vehicle, down to 0.1 

points/cell at 35 meters depth (in Fig. 6.c, shown in a 

logarithmic form).  

To compute the actual density of 3D points (measured 

density), a counter is stored for each cell (when the DEM is 

built) that shows how many 3D points are contained by the 

cell. For road cells at far depths, this counter is not equivalent 

with the real density of 3D points. The measured density (Fig. 

6.b, logarithmic form) can be estimated by averaging the map 

of counters with an adaptive mask, with the size equal to 

2∆Ph+1 (∆Ph is the distance used for connectivity, previous 

sub-section): 

 ∑
∆

∆−=

+
+∆

=
2/

2/

),(
12

1
),(

h

h

P

Pkh

colkrowCounters
P

colrowmd .(14) 

V. DENSITY-BASED OBSTACLE CLASSIFICATION 

The number of reconstructed 3D points is much greater if it 

contains a close to-vertical surface instead of the close-to 

horizontal road surface (due to the perspective projection). 

This is exploited in various ways in the literature. In [7], 

obstacles are detected as clusters of image edge points 

reconstructed in the 3D space. Road features as lane-markings 

can also be detected as obstacles. An algorithm for off-road 

navigation is presented in [9]: 3D points are clustered into 

obstacles based on their relative height and slope. A cone-

shaped region is used to reduce the search space around each 

3D point when performing clustering. The algorithm was fast 

but only close to real-time (0.5-1.5 Hz), and the response time 

was dependent to the scene’s richness of 3D points. The 

gradient of the DEM is used in [11] to evaluate the 

navigability of the environment. 

Our approach also relies on the fact that obstacles cells have 

much larger densities than the road for the same depth (Fig. 6. 

c, the difference between the expected road density and the 

measured density maps). There are two main reasons we 

preferred to use a planar (flat) road as the reference for 

comparison (road expected density). This classifier should 

work even for scenes where the road surface cannot be 

detected (poor 3D reconstruction, with no or few 3D road 

points). In addition, it should have a low computational 

complexity: the road expected density is computed offline, not 

for every frame (if the “per-frame” detected quadratic surface 

would be used).  

If the road is non-flat, then cells containing the road surface 

will have a different density than the flat road: higher for 

uphills (Fig. 5.a, the dashed line trapezoid has a larger area), 

and lower for downhills. To avoid uphill road patches to be 

detected as obstacles, we propose a double thresholding 

technique: 

• Cells are flagged as Obstacle if the measured density of 

the cell is higher by TH times than the estimated road 

density, 

• Other cells are flagged (recursively) as Obstacle if they 

are adjacent to an Obstacle cell and the measured 

density of the cell is higher by TL (=TH/2) times than the 

estimated road density. 

The quotient TH is computed as a function of the maximum 

slope allowed for the road surface at a particular DEM 

location. The expected road density for a cell containing a 

road patch with a particular slope is computed as shown in 

section II.B, as the area of its trapezoidal image projection. 

40%

0%

Slope=

H

Slope=

erd(C )
T =

erd(C )
.             (15) 

 We used a value of 40% (about 22 degrees) for the slope, 

which covers even extreme uphills for urban roads. An 

additional constraint can applied at the first step of the double 

thresholding to reduce false detections: the height variation of 

each obstacle DEM cell must be above a threshold (the height 

uncertainty plus a minimum obstacle height value ∆ho of 5 to 

10 cm). 

The method is used as a stand-alone detector (if the road 

surface is not valid) or it can be fused with the road surface-

based classification (section VI.C).  

VI. ROAD SURFACE DETECTION AND CLASSIFICATION  

The ego-pose is estimated relative to the road plane in [5]. 

The road plane is fitted (not in real-time) by a RANSAC-

approach to the whole set of dense 3D points (after filtering 

non-road points). A constant band around the road is used to 

select inliers and outliers, even though this is against the fact 

that the 3D uncertainty from stereo increases with the depth. 

The assumption that most of the 3D points are road points is 

made again (if the ego car is close to a sidewalk with more 3D 

points that the road, it is likely to fail). A planar road surface is 

estimated from tracking in [6]. The method provides robust 

numerical results, but fails if occlusions (obstacles) are in front 
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of the ego car. Lack of high-gradient road features also leads 

to failure (lane markings, borders, etc.). A 3D lane model is 

proposed and used for obstacle/road points’ separation in [8]. 

Again, the method requires high-gradient road features (edges) 

to be present and uses a constant band to select road inliers 

and outliers. 

The RANSAC approach [13] is a robust method for fitting a 

model to a data set containing outliers. Instead of fitting the 

model to the whole set in a least square fashion (due to outliers 

the solution will not be accurate), the RANSAC approach 

chooses a number of samples (subsets of the data set). For 

each sample, the model is fitted and a score is computed. The 

sample with the highest score is selected.  

Fitting the surface to the whole DEM can be very unstable 

and time consuming due to a large number of road outliers. 

Therefore, our solution involves the following steps: 

• Selection of cells for initial surface fitting: a rectangular 

DEM region of interest, in front of ego, is analyzed to 

filter most road outliers; a RANSAC technique is then 

employed to detect the primary road surface. 

• Uncertainty model-driven surface growing: the initial 

surface is refined gradually, by taking into account the 

uncertainty model of the stereo sensor. 

• Road surface-based classification: cells are classified 

as road, traffic isles or obstacles, based on their position 

and density relative to the road surface. 

A. Selection of cells for initial surface fitting 

A rectangular patch from the DEM is selected in front of the 

ego car. Valid cells from this patch will represent the data set. 

Not all the valid cells will be used because there are two 

situations when even RANSAC can fail (Fig. 7): when traffic 

isles or obstacles are dominant in the selected patch.  

Two constraints are used to filter the data set (Fig. 8.c) 

before applying RANSAC:  

• All cells, previously classified as obstacle by the 

density-based classifier (section V), are rejected. 

• Linear curbs are detected in the rectangular patch. Cells 

placed on the opposite side as the ego car, relative to 

the detected curbs, are rejected. Simple 2D geometry is 

employed, considering that the front of the ego car is 

placed, in the DEM space, on the middle column and 

the bottom row.   

In [17] a Time-of-Flight camera is used for acquiring range 

data. Curbs are identified based on the detection of individual 

planar patches (adjacent to the curb) using a modified version 

of RANSAC.  Image edge points are detected in [18]. A 

weight is computed, for each edge point, as a function of the 

image brightness gradient and the 3D elevation gradient 

(computed from stereo). These weights are used for voting in 

the Hough accumulator. One dominant straight curb (per 

scene) is extracted as the line with the maximum score in the 

accumulator. In [19] the detection starts alongside the vehicle, 

with a laser line striper, by searching the specific height 

variation of curbs. Then the curb is extended and tracked in 

front of the vehicle, based on a video camera and the ego 

motion.  

 
Fig. 7. Two situations where RANSAC can fail: large traffic isles or obstacles 

in front of ego. The patch selected for initial fitting is shown as a white 

rectangle. 

Our solution for curb detection is also based on the Hough 

transform [15]. Edge points are computed on the DEM, using 

the Canny edge detector [14] to detect specific height 

variations. The Hough transform is built and 5 relevant lines 

are selected, having the highest Hough scores. Each line is 

analyzed by counting how many of its points have a height 

variation between 5 cm and 35 cm (normal range for curbs). 

Lines with a score higher than 40% of the total number of line 

points are considered valid. At most two of the valid lines 

(left/right), with the highest scores, are selected as curbs.  

False curbs may be detected, but they pose a problem (filter 

out most of the valid road cells) only if they have a lateral 

orientation and are placed close to the front of the ego car. 

This situation was extremely uncommon: from a large urban 

sequence of 10450 frames, such bad curbs were detected only 

in 2 frames. 

      
   a.                                       b. 

     
                                         c.                                     d. 

Fig. 8. a. The curb is projected onto the left image,  b. The curb is detected on 

the DEM (green line – only the segment overlaying valid height data is 

shown), c. Cells with valid height are shown with blue,  d. Highly probable 

road cells are selected for RANSAC. 

One issue emerged regarding least square fitting of 

quadratic surfaces: numerical stability for a small set of cells. 

A planar surface would require at least 3 non-collinear cells. 

However, a quadratic surface requires at least 5 cells and the 

non-collinear constraint is not enough. Various configurations 



 7

of cells can lead to unstable fitting (ill-conditioned): quasi-

circular cells, cells placed on two quasi-parallel lines, etc. 

 Therefore, a planar model was fitted in order to select the 

set of primary road inliers.  

The RANSAC method is applied to the filtered set of cells. 

We used a number of K samples of 3 cells each. The value of 

K can be computed ([13]) as a function of the success 

probability p and the percentage of inliers w in the data set. A 

value of K=86 samples was obtained for p=0.99999 and 

w=50% (a very conservative value, since the data set is already 

filtered of most road outliers).  

The planar surface was computed for each sample. The 

score for each sample was considered as the number of inliers 

from the whole set. The uncertainty model from section III.B 

was used to classify a cell as part of the road surface. The 

sample with the highest number of inliers is selected as the 

best planar road surface. If the total surface of inliers is less 

than (equivalent in 3D) 1 m
2
, then the detection of the road 

surface is aborted and only the density-based method proposed 

in section V is used for obstacle detection.  

The quadratic model is fitted (section III.A) to the set of 

inliers of the best planar surface, and the primary quadratic 

road surface is obtained. 

B. Uncertainty model-driven surface growing 

The primary road surface is detected correctly for the cells 

in front of the vehicle. Correctness is not granted for the whole 

scene because vertical curvatures of the road surface can be 

computed correctly only using large road patches.  

The primary solution can be refined through a region 

growing process (Fig. 9) where the initial region is the set of 

road inliers from the initial rectangular patch. A new cell can 

be added to the current region if it fulfills the following 

conditions: 

• It is adjacent to inliers from the current region, 

• It verifies the current road surface equation according 

to the uncertainty model (section III.B). 

The surface is re-computed, in a least square-fashion, each 

time the region has expanded its border with 1-2 pixels (about 

50-100 new cells). This insures that the surface is refined 

gradually (Fig. 9.a). On average, the surface is recomputed 

about 150-200 times per frame. This can be very slow since it 

involves computing the sums defined by (6), in section III.A.  

A real-time implementation is possible by using the partial 

sums between two consecutive re-computations (only the 

amounts for the new cells are added).  

A global accurate solution for the road surface is obtained 

after this step. The iterative refinement of the surface is fast 

and stable to outliers and numerical errors: for each iteration 

only (most-likely) road cells are added to the current region 

and the parameters are re-computed using least square fitting. 

C. Road surface-based classification of cells  

Elevation map cells are classified based on the road surface, 

into road, traffic isles and obstacles (Fig. 10.c).  

Both traffic isle and obstacle cells have the property of 

being elevated relative to the road surface. Two properties of 

traffic isles will help discriminate them from obstacles:  

1. They have a height in a limited interval relative to the 

road. 

2. They are mainly made of surfaces parallel to the road 

(next section). 

  

a. 

   
    b.                                           c. 

  
d.                                        e. 

Fig. 9. a. The lateral road surface profile (X=0), 3D points are shown with 

gray, b. The left image, For each image (c, d, and e), the left side shows the 

inliers used for surface fitting, while the right side shows the classification of 

the whole DEM based on the current surface parameters: c. For the primary 

surface, d. An intermediate surface, e. The final surface. 

  
                     a.                                 b.                       c.                       d.   

Fig. 10. a. A traffic scene, b. The DEM, c. The result of the road surface 

based classification (blue - road, yellow - traffic isle, red - obstacles), d. The 

result of the density-based classification. 
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The following rules are used for the classification of a DEM 

cell P: 

• If the height of P relative to the road is lower than the 

estimated height uncertainty for the cell location, then 

the cell is considered Road, 

• Otherwise,  

o If the height of P relative to the road is in a 

specific interval (5-35 cm) and it was not 

classified as obstacle by the density based 

classifier, then P is considered Traffic Isle,  

o Otherwise,  

� If the height of P from the road is above 

a threshold (a minimum obstacle height 

plus the height uncertainty), the cell is 

considered Obstacle, 

� Otherwise P is considered garbage 

(contains erroneous 3D data). 

VII. FUSION AND ERROR FILTERING 

The road surface-based classifier (section VI.C) provides 

good results but also some false positives (both traffic isles 

and obstacles, Fig. 11.a). On the other hand, the density-based 

classifier (Fig. 11.b) provides good results for obstacles 

(especially for close-to vertical sides).  

Fusion must be performed between the results of the two 

classifiers. Some basic constraints upon cell clusters can be 

used to filter false traffic isles. Traffic isles are placed above 

the road surface, thus cells containing traffic isles have lower 

densities of 3D points (compared to the underlying road 

surface). This is motivated by the fact that the solid angle 

(made by a close-to-horizontal surface patch and the camera 

location) decreases as the surface patch is translated upward 

on the vertical axis. Thus, fewer 3D points are reconstructed 

for a traffic isle (resulting lower density in the DEM cells), 

compared to the situation where the traffic isle is not present 

(the lower road surface patch is reconstructed, with a higher 

expected density).  

The following rules are used for error filtering and fusion:  

• Small Traffic Isle areas from the rough classification 

are discarded (less than 0.5 m
2
), 

• Traffic Isle areas having an average measured 

density higher than the average road expected density 

in the DEM cells are discarded, 

• Obstacle areas from the road surface-based 

classification are marked as false elevations if they do 

not overlap Obstacle areas from the more robust 

density-based classification, 

• For depths higher than 30 meters, only the result of 

the density-based classification is used.  

The last rule is justified because the height uncertainty 

increases with the depth. For our stereo configuration, a 3D 

road point at a depth of 30 meters can have a height 

uncertainty of 17 centimeters (Fig. 3.a). Our experiments 

showed that, for depths higher than 30 meters, traffic isles 

detection is more or less random and provides many false 

positives. Detection of traffic isles is usually reliable up to 20-

25 meters, depending on the quality of the stereo 

reconstruction. 

False elevations can either be displayed as drivable (road, 

Fig. 11.b), or they can be invalidated and not displayed, as in 

Fig. 11.c.  

   
a.                                                 b. 

 
c. 

Fig. 11. a. The output of the road surface-based classifier is projected onto the 

left image. Grid vertexes represent the centers of the DEM cells, b. The output 

of the density-based classifier, c. Results after fusion and error filtering (false 

3D spikes are removed). 

We evaluated the algorithm (with the steps described so far) 

and discovered that small false traffic isles can appear (11 

false traffic isles/200 frames, see section VIII). Although less 

than 5% of the detected traffic isles are false, they can appear 

in front of the ego car and cause false collision situations.  

False traffic isles have an important feature: they persist 

only for a limited number of consecutive frames (mostly for 

two frames). Furthermore, traffic isles are static scene items. 

Based on these features, we propose a fast (about 2 ms) and 

efficient approach to filter false traffic isles.  

For each frame, 3D points are represented in a system of 

coordinates that moves with the ego car (translation and 

rotation). Coordinates of a DEM cell from the current 

reference frame O(t) can be transformed into the previous 

reference frame O(t-1), assuming the translation d and rotation 

angle α are known. The ego car’s standard speed and yaw-rate 

sensors can be used to estimate these parameters. The 

following motion model is employed: the ego has a circular 

trajectory between successive frames, and the arc length and 

radius are computed based on speed v, yaw-rate angle γ and 

frame relative timestamp ∆t.  

Two steps are performed for validating a traffic isle cell 

over two consecutive frames (t and t-1). For each traffic isle 

cell C(i, j) of DEM(t): 

1. Compute the coordinates of C in the previous frame 

DEM(t-1), as real numbers (i’, j’). 

2. If at least one of the four DEM(t-1) closest cells of 
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(i’,j’) is a traffic isle then C is validated as a traffic isle 

cell in the current frame. Otherwise it is rejected 

(marked as invalid). 

Using a 2x2 DEM cell neighborhood around the non-integer 

coordinates (i’,j’) is required to compensate some sources of 

errors: lack of accuracy from the ego sensors, pitch angle 

variation might occur between frames (due to road bumps etc), 

causing small depth shifts.  

Extending the process to three (or more) consecutive frames 

(t, t-1 and t-2) is straightforward. We tested the transformation 

between consecutive frames for up to 5 frames (from t to t-4). 

The car sensors proved accurate enough so that an item (a thin 

pole was used for verification) is located in frame t-4 with an 

error (in the horizontal plane) less than the DEM cell size (10 

cm). As it will be shown in the next section, the persistence-

based filtering is robust.  

VIII. RESULTS AND EVALUATION 

The algorithm was implemented in C++. The dense 3D 

information was generated using a calibrated stereo rig with 

grayscale cameras and a commercial dense stereo board [16]. 

Image resolution was 498x468 pixels, with a focal length/FOV 

of 811 pixels/34 degrees, and a baseline of 220 mm.  

 

Table 1. Main threshold values used 

Derr ∆h 

Max. 

road 

slope 
∆ho 

Hough 

Accumulator 

(deg x pixels) 

Curb/traffic 

isle interval 

0.5 

pixels 

2.5 

cm 
40% 7.5 cm 360 x 90 5..35 cm 

  

Due to the use of software-specific C optimizations and the 

DEM representation, an average processing time of 22 ms was 

achieved for the whole algorithm (on Pentium 4 at 2.6 Ghz).  

Overall, with the image acquisition and the dense hardware 

reconstruction, a sustained processing frame-rate of 23 fps is 

obtained. An average total processing time of 10 ms is 

achieved on a more recent processor (Pentium Dual Core).  

A. Evaluation  

The evaluation of the algorithm with real scenarios was time 

consuming. We were mainly interested in evaluating the 

capability of the algorithm to detect relevant scene items. For 

each test scenario, the classification result was projected from 

the DEM space onto the left image. Visual analysis (by a 

human observer) of each image was performed. Results were 

analyzed for each frame in terms of: missed obstacles, missed 

traffic isles, false obstacles, and false traffic isles.  

A number of 200 stereo images of different (random) scenes 

were selected (out of two hours of stored stereo images, 

recorded while driving the ego-car in an urban environment). 

Overall, for the 200 stereo images, the numbers obtained 

proved the robustness of the algorithm (only “per-frame” 

detection, without the step of persistence filtering for false 

traffic isles): 

• Missed obstacles: 16 out of 484 - very small objects, 

such as (thin) poles smaller than 30 centimeters in 

height (Fig. 14.e); relevant obstacles, such as 

pedestrians or vehicles, were not missed. 

• False obstacles: 1 small obstacle, at far depths (>30 

meters) for sharp uphill roads (Fig. 14.d). These false 

obstacles were not persistent between frames, so they 

can be filtered through tracking. They only appeared at 

far depths so the navigability is not influenced. 

• Missed traffic isles: 11 out of 234 - the isles height was 

too small (3-5 cm), not “sensed” by the stereo system, 

they are mainly drivable areas such as bus stations (Fig. 

14.f). 

• False traffic isles (Fig. 14.a): 11, small traffic isles that 

persist only few frames (1-2).  

When the additional persistence-based filtering is used, the 

detection of traffic isles is more robust. For the 200 images, all 

false traffic isles are rejected.  We performed an additional 

qualitative evaluation (only to count false traffic isles) on an 

offline sequence of 6250 frames. By using a 2-frames 

persistence condition, the rate of false traffic isles decreased to 

1 at about 370 frames. The 3-frames persistence condition 

provided much better results: only two false traffic isles along 

the whole sequence.  

The detection errors are not caused by the way dense stereo 

data is represented. They are caused by the low quality of the 

3D reconstruction.  

The difference between a quadratic surface and a planar one 

is shown in figure 13 (both are detected with the proposed 

algorithm). The mean absolute error of the reconstructed 3D 

road points relative to the computed surface is about 4 times 

larger for the planar model, in contrast to the quadratic one. 

The quadratic road model proves less effective in scenes 

with more complex road geometry. A large transversal false 

traffic isle appeared on the border between the quadratic 

surfaces (Fig. 14.b): the road surface was made of two main 

quadratic surfaces with different parameters. A more complex 

model should be investigated. 

Modeling the 3D environment with a digital elevation map 

is not always optimal. Floating items (not rising from the 

road), such as tree branches (Fig. 14.c) or rough noise from 

dense stereo, can be a source for false obstacles. The DEM 

model must be extended to store the set of 3D points contained 

by each cell, for further processing. Additional noise filtering 

can be performed during the DEM building stage.  

IX. CONCLUSIONS 

The main contributions presented in this paper are: an 

obstacle detection method based on the density of 3D points 

per DEM cell (as a measure of the local slope), a combination 

of RANSAC, region growing and least square fitting for the 

computation of the quadratic road surface, and the detection of 

traffic isles as a distinct class along with other relevant 

obstacles (pedestrians, vehicles, poles etc.). 

A real-time algorithm was proposed based on these 

contributions. It takes as input dense 3D points, thus road edge 

features (high gradient) are not required. To achieve real-time 
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processing (and almost constant), the 3D set of points is 

transformed into a digital elevation map. The road is modeled 

as a quadratic surface to allow vertical curvatures, often 

present in urban scenarios and the 3D uncertainty increasing 

with the depth is taken into account. Possible lack of road 

dense 3D data, due to poor road texture, is compensated by the 

density-based obstacle detection method.  

It has its own failure cases, as discussed in section VIII, and 

other future developments (in addition to those presented in 

sections V and VIII.B) are required: 

• Additional evaluation of the proposed algorithm, 

• Using tracking for obstacle blobs can greatly improved 

the robustness of the method, 

• A more complex road model will be proposed and 

tested (cubic or 4
th

 degree, or a cubic-spline surface). 

 

  

 

 

 

 

 

 

 
Fig. 12. Results for various scenes. The algorithm performs well even for 

scenes with sparse 3D road reconstruction and noisy 3d data (the grid is 

projected only where dense 3D data is provided by the dense stereo engine). 

The result for the first scene is displayed using a virtual camera. Grid colors 

represent blue - road, yellow - traffic isles, and red - obstacles. 

 

 
Fig. 13. The road surface is detected with the proposed algorithm. A quadratic 

model (middle) is more suitable than the planar model (top). The lateral view 

shows a 3D region with a depth range Z of 25 meters and Y from -1.5 to 1.5 

meters. For better visualization, only 3D road points inside the yellow 

trapezoid (bottom image) are shown, and a cross-section (X=constant) of the 

surface is drawn. 
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                               a.                                                         b. 

  
                               c.                                                         d. 

  
                                e.                                                         f. 

Fig. 14. a. False traffic isle appearing in the left-lower part of the image, b. 

Large false traffic isles are likely to appear if the road surface is not close to 

the quadratic road model, c. False obstacles appear on the right side due to 

floating tree branches, d. A small false object appears at far depths (34 

meters, depicted with the green arrow), in a sharp uphill scene, e. Small traffic 

poles are sometimes not detected due to the lack of 3D data (usually this 

happens for mid- and far depths), f. Traffic isles with very small elevation 

from the road are classified as road inliers. The bus station shown by the 

arrow presents a 3 cm elevation at its border. 
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