

FP7-ICT-314193, grant 314193/2012

3D Omnidirectional Stereo Vision Based Perception

Sergiu Nedevschi Technical University of Cluj-Napoca, Romania

Coordinator:Sergiu NedevschiTeam:Marita TiberiuAndrei VatavuAndrei VatavuArthur CosteaRobert VargaIstvan SzakatsAliz-Eva Nagy

On-board Perception PAN-Robots Solution

Objectives

- On-board multi-sensor environment perception:
 - 2D safety and perception, enhanced by
 - 3D omnidirectional stereo vision based perception

Specific Objectives

- To develop and implement a 3D sensing mechanism for AGV surrounding perception
- 360° horizontal FOV, 150° vertical FOV
- Detect, track and classify objects
- Enhance the 2D safety around the AGV

Technical Requirements

- Object detection, tracking and classification
 - Position/Dimension error: < 3 % of object distance
 - Velocity accuracy: ±0.5 m/s at 1 σ
 - Object classification rate: > 90%
- Area to be processed
 - 11 m in front and 4 m in lateral direction (starting from the longitudinal axis of the AGV), and a height of 4.5 m
- Data processing rate
 - >=10 Hz

System Overview

Main tasks

- 3D Reconstruction
- DEM
- Extracting Object Hypotheses
- Object Classification
- Object Tracking

3D Omnidirectional Stereo Vision 3D Reconstruction

Multi-Channel Rectification

front

central

back

3D Omnidirectional Stereo Vision 3D Reconstruction

3D Omnidirectional Stereo Vision 3D Reconstruction

as:

Digital Elevation Map

 An accurate probabilistic inverse sensor model of the stereovision sensor based DEM creation algorithm was proposed

$$P(c_{i,j} \mid z) = \alpha \cdot P(z \mid c_{i,j}) \cdot P(c_{i,j})$$

• More generally the direct sensor model is proposed

$$P(z_t \mid x_t, m) = \begin{cases} N(z_t^*, z_t, \sigma); z_t \in ROI \\ 0 \end{cases}$$

- z_t^* true position
- z_t the measured position
- x_t position of the robot (sensor)
- σ parameters of the normal distribution
- m known position of objects in the environment

Digital Elevation Map

- 2 components of the direct sensor model are used:
 - Systematic errors: the translation vector T from the measurement to the true position
 - Gaussian noise around the true measurements

3D Omnidirectional Stereo Vision Digital Elevation Map

Sensor Models

• Algorithm for finding the direct sensor model:

- Mark the objects with a polygon in the rectified images
- Collect all the 3D points reconstructed inside the polygon for several frames
- Calculate the mean, standard deviation, covariance and the vector from the calculated mean to the ground truth position corresponding to each template object
- Filter the results
- Perform a trilinear interpolation in order to generalize the model to the whole ROI

3D Omnidirectional Stereo Vision Uncertainty based Classified DEM

Uncertainty Based Digital Elevation Map Creation

- Create a histogram of heights for each cell with a probabilistic contribution of points based on the invers sensor model
- Filter the histogram (Gaussian filtering)
- Take the consistent height which is closest to the biggest elevation.

Digital Elevation Map Classification

- Plane fitting using the elevation map
- The 3D points lying in a range of +/-30 cm w.r.t. the expected height of the ground floor are fitted to planar surface using a RANSAC estimator
- The 3D points and by consequence the DEM cells are discriminated and labeled in road and obstacle points and cells based on the estimated surface.

3D Omnidirectional Stereo Vision Uncertainty based DEM

Extracting Object Hypotheses

- The object hypotheses are extracted by clustering the DEM cells into connected entities – blobs.
- Each object hypotheses is defined by two separate models:
 - -A 3D cuboid used to select the ROI for obstacle classification.

-A free-form polygonal representation – used to extract the object motion by applying a fast ICP-based alignment solution.

3D Cuboids

Free-Form Polylines

Multiple Depths Border Scanner Algorithm

• Current solution:

- Is able to collect obstacle contour points situated at different depths along the same ray (one point per obstacle, multiple points per ray).

Border Scanner Algorithm

The classified DEM (top view)

Previous Approach

Multiple Depth Border Scanner (Current Solution)

Object Detection Evaluation

Evaluation based on objects with known position and size

Evaluation Metrics	Result
Detection Rate	92.8 %
Frames Number	456
Total Objects	4595
Missing Objects	331

Object Detection Evaluation

Evaluation based on objects with known position and size

Evaluation Metrics	Result		
Mean Localization Error	0.156 m		
Mean Width Error	0.10 m		
Mean Height Error	0.054 m		
Mean Length Error	0.167 m		
Dist Err [%] at 1 σ	2.53 %		
Width Err at 1 σ	0.09 m		
Length Err at 1 σ	0.11 m		
Height Err at 1 σ	0.04 m		

Kalman Filter Based Solution

- Estimate, recursively in time, the state of the detected obstacles around the AGV given all measurements up to the current time *t*.
- The obstacle state, at a time *t*:

- The overall obstacle tracking solution is decomposed into several steps:
 - 1. AGV motion compensation
 - 2. State Prediction
 - 3. Position and Size measurement
 - 4. Data Association
 - 5. ICP-based Speed measurement
 - 6. Update

Obstacle Trajectories in Time (top view) **Obstacle Tracking**

Tracking Evaluation

2. Evaluation using AGVs with different known speeds and orientations

Tracked speed and orientation evaluation

			Orientation			
		Accuracy metric	0 °	90 °	135 °	Spec at 1σ
Ground Truth Speed	0.75m/s	Speed err. STDEV (m/s)	0.25	0.31	0.14	< 0.5 m/s
		Orientation err. STDEV (deg.)	2.90	7.14	11.44	< 15 $^{\circ}$
	1.2m/s	Speed err. STDEV (m/s)	0.21	0.18	0.15	< 0.5 m/s
		Orientation err. STDEV (deg.)	1.77	10.86	10.42	< 15 $^{\circ}$
	1.8m/s	Speed err. STDEV (m/s)	0.33	0.19	0.22	< 0.5 m/s
		Orientation err. STDEV (deg.)	1.87	4.87	3.73	< 15 $^{\circ}$

Classes

Pedestrian, AGV, Large Obstacle, Small Obstacle (height < 50 cm),

Initial obstacle hypotheses

Classified Obstacles

Classification Process

- 3D box -> 2D image
- Resize image
- Compute descriptor
- Classify descriptor

Visual Codebook Based Image Description

Use HOG as local descriptor
24 dimensional vector
for a 8 x 8 pixel region

- Dense local descriptor computation
- Create a visual codebook for HOG descriptors 100 words.

Classification Features: word count in 25 regions Classification

- Boosting classifier with 2048 decision stumps
- Use classification history for tracked objects

Pedestrian, AGV, Large Obstacle, Small Obstacle

Bilbao PAN-Robots Final Event

Classification Evaluation

- Obstacle database from 32 different scenarios, annotated manually:
 - 8709 pedestrians
 - 6753 AGVs
 - over 130000 other obstacles
- 75% used for training, 25% used for evaluation

Class	Recall	Precision
Pedestrian	91%	92%
AGV	93%	94%
Other	96%	97%

Recall – how many pedestrians were detected from all the pedestrians? **Precision** – how many pedestrians were really pedestrians? (penalize false positives)

3D Omnidirectional Stereo Vision Push Beyond State of the Art

- Original Omnidirectional Stereo Solution
 - Multi-channel virtual pinhole imagers
 - Multi-channel based rectification algorithms
 - Multi-channel based SGM stereo reconstruction
- Uncertainty Based DEM
 - Direct and invers stereo sensor model estimation method
 - Invers sensor based DEM creation algorithm
- Original Object Tracking and Classification methods in the context of omnidirectional stereo vision
- The Concept of 2D Safety Enhanced by 3D Perception

Project Coordinator: KAY FUERSTENBERG SICK AG Merkurring 20 22143 Hamburg, Germany kay.fuerstenberg@sick.de

Project Dissemination Manager: CESARE FANTUZZI UNIVERSITY OF MODENA AND REGGIO EMILIA via Amendola 2, (pad. Morselli) 42122 Reggio Emilia, Italy cesare.fantuzzi@unimore.it Presentation author: Sergiu Nedevschi TECHNICAL UNIVERSITY OF CLUJ-NAPOCA Str. Memorandumului 400114 Cluj-Napoca, Romania Sergiu.nedevschi@cs.utcluj.ro

PAN-Robots is funded by the European Commission, under the 7th Framework Programme Grant Agreement n. 314193.

Bilbao PAN-Robots Final Event