# INTER SAFE2

# **On-board Perception for Intersection Safety**

Sergiu Nedevschi, Technical University of Cluj-Napoca, Romania



# **On-board Perception for Intersection Safety**

# INTER SAFE2



# **On-board Perception for Intersection Safety**

# INTER SAFE2



# INTER SAFE2

# **Perception through Stereovision**

# **Technical University of Cluj-Napoca**







European Commission

# Perception Through Stereovision INTER SAFE2



# Requirements for the Stereo INTER SAFE2





- 1. Detect the presence and measure the relative position and velocity of the oncoming vehicles.
- 2. Detect the presence of the crossing vehicles and crossing vulnerable road users and measure their position and velocity relative to the host vehicle.
- 3. Detect road markings and lane boundaries in front of the host vehicle and measure their relative position to the host vehicle.
- 4. Detect painted road signs in front of the host vehicle and measure their relative position to the host.
- 5. Localize the host vehicle when it is close to the stop line.
- 6. Localize the host vehicle within the intersection.

# INTER SAFE2



# INTER SAFE2



# INTER SAFE2





# **Stereo Image Acquisition**





# Specifications Synchronize

 Synchronized image pair acquisition using a dual port CameraLink framegrabber.

#### Capabilities

- Image acquisition from multiple camera setups
- Adaptation to lighting conditions
- Real-time image rectification and downsampling



# INTER SAFE2





#### **Specifications**

- Real-time stereo reconstruction using a dedicated TYZX board
- Real-time stereo reconstruction using original algorithms
- Real-time computation of optical flow



### Capabilities

- Range: 0.5 50 m
- Frame rate: 20 Hz (limited by camera speed)
- Maximum error: 3% from depth





# Dense Stereo Reconstruction and Dense Optical Flow Computation







# INTER SAFE2

### **Higher Level Functions**

#### Structured Approach

- Current and side lanes detection and tracking.
- Road painted signs detection, localization and classification.
- Obstacle detection and tracking.
- Classification of relevant obstacles.

### **Unstructured Approach**

- Environment perception by the use of digital elevation maps.

# INTER SAFE2

### Lane Detection and Tracking

- Lane width: 2 5 m
- Vehicle pitching: ±2°
- Curvature radius: 50 m infinity
- Range: 3 40 m
- Minimum visible road required for detection: 5 m



# INTER SAFE2

## Road Painted Signs Detection, Localization and Classification

- Detection range, limited by the perspective effect: 3-15 m
- Classification accuracy: 90%
- Types of objects: Stop lines, Interrupted crossing lines, Lane markings, Arrows (forward, left, right, forward-left, forward-right)





### **Obstacle Detection and Tracking**

- Detection range: 0.5-40 m
- Positioning error: 3 % from range
- Detection rate: >95%





### **Classification of Relevant Obstacles**

- Types of objects: Cars, Pedestrians, Bikes, Poles, Others: generic obstacles
- Classification accuracy: 90%





## Environment Perception Using Elevation Maps

- Cell size: 10 cm x 10 cm
- Grid size: 240 x 500 cells
- Scene covered: 24 m x 50 m
- Height (elevation) computed for each cell
- Class for each cell (road, obstacle, sidewalk)





# Environment Perception Using Elevation Maps

Compressed object representation based on attributed polygonal lines





# Environment Perception Using Elevation Maps

Collision warning based on host vehicle trajectory prediction



# INTER SAFE2

## **Communication of Results**

#### **Output structure**

- Digital elevation map, with cells classified as curbs, obstacles and drivable area.
- Road data: list of painted road objects, description of lane geometry.
- Obstacle data: list of tracked and classified traffic objects.

The outputs are supplied through CAN or Ethernet.



# Stereo Based Applications for INTER SAFE2 Intersection Safety





#### Accurate perception of the vehicle position in intersections

 Stereovision results can be fused with GPS and map information for precise determination of location and orientation in intersections.

#### Static and dynamic environment reconstruction

- Medium accuracy perception of most relevant aspects of the environment contributes towards a rich description of the driving environment.

**Stereovision-based driving assistance applications**: lane keeping assistance, automatic cruise control, stop and go, pedestrian avoidance, emergency braking.

- The stereovision sensor can provide most of the static and dynamic information needed for the most common driving assistance applications.

# INTER SAFE2

# **Perception through Laser Scanner**







European Commission

# Perception Through Laserscanner INTER SAFE2



### **Laser Scanner Perception**

# INTER SAFE2



# **Specifications**

#### Inputs

- Installation parameters (e.g. height, orientation, offset to vehicle coordinate system)
- Host vehicle data (e.g. yaw rate, vehicle speed)
- Map data

#### Outputs

- Object data (tracked and classified)
- Intersection reconstruction

#### Performance

- The device is eye-safe (laser class 1)
- Scan frequency: 12.5/25 Hz
- Field of view (horizontal): 100°
- Range: 0.3m to 200m
- Angle resolution: 0.1° to 1°
- Built-in processing
- Parallel and simultaneous scanning layers

### **Laser Scanner Perception**

# INTER SAFE2



### **Detection, classification and tracking of obstacles**



### **Laser Scanner Perception**





### **Detection, classification and tracking of obstacles**



# Laser Scanner-based Applications for Intersection Safety INTER SAFE2





#### Accurate perception of the vehicle position in intersections

 Laser scanner results can be fused with GPS and map information for precise determination of location and orientation in intersections.

#### Static and dynamic environment reconstruction

- High accuracy perception of most static and dynamic obstacles in the intersection

Laser scanner-based driving assistance applications: automatic cruise control, stop and go, pedestrian avoidance, emergency braking.

**On-board Perception for Intersection Safety** 



# Thank you ! Questions ? <u>Sergiu.Nedevschi@cs.utcluj.ro</u>

#### 2009

S. Nedevschi, R. Danescu, T. Marita, F. Oniga, C. Pocol, S. Bota, M-M. Meinecke, M. A. Obojski, "Stereovision-Based Sensor for Intersection Assistance", book chapter in *Advanced Microsystems for Automotive Applications*, April 2009, Springer, ISBN 978-3-642-00744-6, pp. 129-163.

F. Oniga, S. Nedevschi, M. M. Meinecke, "Temporal Integration of Occupancy Grids Detected from Dense Stereo Using an Elevation Map Representation", in *Proceedings of the 6th International Workshop on Intelligent Transportation (WIT 2009)*, Hamburg, Germany, pp. 133-138.

R. Danescu, S. Nedevschi, "Probabilistic Lane Tracking in Difficult Road Scenarios Using Stereovision", *IEEE Transactions on Intelligent Transportation Systems*, vol. 10, No. 2, June 2009, ISSN 1524-9050, pp. 272-282.

R. Danescu, F. Oniga, S. Nedevschi, M-M. Meinecke, "Tracking Multiple Objects Using Particle Filters and Digital Elevation Maps", *IEEE Intelligent Vehicles Symposium (IEEE-IV 2009)*, June 2009, Xi'An, China, pp. 88-93.

I. Giosan, S. Nedevschi, S. Bota, "Real-Time Stereo Vision Based Pedestrian Detection Using Full Body Contours", *IEEE Intelligent Computer Communication and Processing*, 2009, pp. 79-84.

S. Nedevschi, S. Bota, C. Tomiuc, "Stereo-Based Pedestrian Detection for Collision-Avoidance Applications", in IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 3, 2009, pp. 380-391



#### 2010

S. Nedevschi, T. Marita, R. Danescu, F. Oniga, S. Bota, I. Haller, C. Pantilie, M. Drulea, and C. Golban, "On-Board 6D Visual Sensor for Intersection Driving Assistance," book chapter in *Advanced Microsystems for Automotive Applications 2010*, Springer Berlin Heidelberg, 2010, pp. 253-264, ISBN 978-3-642-16362-3.

F. Oniga, S. Nedevschi, "Processing Dense Stereo Data Using Elevation Maps: Road Surface, Traffic Isle, and Obstacle Detection", *IEEE Transactions on Vehicular Technology*, Vol. 59, Issue 3, 2010, pp. 1172 – 1182.

R. Danescu, S. Nedevschi, "Detection and Classification of Painted Road Objects for Intersection Assistance Applications", *IEEE Intelligent Transportation System Conference*, 2010, pp. 433-438, ISBN: 978-1-4244-7658-9.

C. Pantilie, S. Nedevschi, "Real-time Obstacle Detection in Complex Scenarios Using Dense Stereo Vision and Optical Flow," *IEEE Intelligent Transportation System Conference*, 2010, pp. 439-444, ISBN: 978-1-4244-7658-9.

A. Vatavu, S. Nedevschi, F. Oniga, "Real-Time Environment Representation Based on Occupancy Grid Temporal Analysis Using a Dense Stereo-Vision System", *IEEE Intelligent Computer Communication and Processing*, 2010, pp. 203-209, ISBN: 978-1-4244-8299-0.

### **Scientific Papers**

# INTER SAFE2

#### 2010 - continued

S. Nedevschi, V. Popescu, T. Marita, Radu Danescu, Marc Michael Meinecke, Marian Andrzej Obojski, Joern Knaup, "Intersection Representation Enhacement by Sensorial Data and Digital Map Alignment", *IEEE Intelligent Computer Communication and Processing*, 2010, pp. 393-400, ISBN: 978-1-4244-8299-0.

#### 2011

V. Popescu, M. Bace, S. Nedevschi, "Improved Localization and Enhanced Environment Representation by Sensorial and Digital Map Data Fusion in Intersections", in *Proceedings of the 8th International Workshop on Intelligent Transportation (WIT 2011)*, 29-24 March 2011, Hamburg, Germany.