
 

 

 

  

Abstract—The urban driving environment is a complex and 

demanding one, requiring increasingly complex sensors for the 

driving assistance systems. These sensors must be able to 

analyze the complex scene and extract all the relevant 

information, while keeping the response time as low as possible. 

The sensor presented in this paper answers to the requirements 

of the urban scenario through a multitude of detection modules, 

built on top of a hybrid (hardware plus software) dense stereo 

reconstruction engine. The sensor is able to detect and track 

clothoid and non-clothoid lanes, cars, pedestrians (classified as 

such), and drivable areas in the absence of lane markings. The 

hybrid stereovision engine and the proposed detection 

algorithms allow accurate sensing of the demanding urban 

scenario at a high frame rate.  

I. INTRODUCTION 

rban Driving Assistance Systems have little in common 

with the systems targeted for highways. Not only is the 

problem itself more complex, with difficult and atypical 

road geometries, crowded traffic, the presence of pedestrians 

and other type of traffic participants which are not normally 

found on the highway, but the expectations from such a 

system are considerably higher. The detection errors are not 

tolerated, the measurement errors need to be considerably 

smaller, and the field of view must be considerably 

increased, to account for the lateral objects. The thematic 

network ADASE (Advanced Driving Assistance Systems in 

Europe, www.adase2.org ) helps define the driving 

assistance requirements by harmonizing and communicating 

active safety functions, identifying technological needs and 

focusing on essentials and preparing architectures, roadmaps 

and standards. 

A realistic analysis of the requirements and of the 

possibilities of the urban traffic environment leads to the 

establishment of several goals for urban traffic assistance, to 

be implemented in the near future: 

- Follow-to-Stop 

- Stop to fixed/ non-moving Obstacles/ Vehicles 

- Go Inhibit if Objects are in front of the own Vehicle 

- Lateral Support in narrow road conditions 

- Set of Max-Velocity depending on lanes width 
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- Go (automatically/ driver initiated) 

In order to achieve these urban ACC applications, a vision 

sensor must provide the following functions:  

- Lane Detection / Lane Parameters Estimation 

- Navigable channel detection and channel 

parameters estimation in crowded environments 

- Vehicle Detection and tracking 

- Detection of fixed (non-moving) Obstacles 

- Classification of Pedestrians 

The sensorial systems for driving assistance (highway and 

urban) are today the focus of large, joint research projects, 

which combine active and passive sensors, GPS navigation, 

and telematics. Projects such as INVENT ( www.invent-

online.de ), PREVENT ( www.prevent-ip.org), CARSENSE 

(www.carsense.org) bring together car manufacturers and 

research partners for the common goal of solving the driving 

assistance problem. Sensing in urban environments is also a 

long-time effort of the DaimlerChrysler research department 

[1]. 

Many new research papers deal with problems that are 

present in the urban driving environments. The researchers at 

Toyota [2] present a stereovision-based system combined 

with a near infrared projector for road and obstacle detection 

in any environment. The unstructured scenario driving is 

approached in [3], [4], and a combined, structured plus non-

structured system is presented in [5]. A dense stereo system 

for obstacle detection for go inhibit, with possible 

applications in urban environments is presented in [6]. New 

methods for lane detection, suitable for urban environments, 

are presented in [7] and [8]. 

The research team of the Technical University of Cluj 

Napoca, in cooperation with Volkswagen AG, has already 

implemented a stereovision-based sensor for the highway 

environment [9]. This sensor was able to detect the road 

geometry and the obstacle position, size and speed, from a 

pair of synchronized grayscale images, using edge-based 

software stereo reconstruction with general geometry.  

The urban scenario required important changes in the 

detection algorithms, which in turn required more stereo 

information. Thus, the edge-based stereo engine was 

discarded, and replaced with a dense stereo system. A 

software dense stereo system being time consuming, a hybrid 

solution was chosen: software rectification and down 

sampling, followed by hardware correspondence search. The 
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time gained by the hardware part compensated the increase 

in complexity of the new algorithms. 

The dense stereo information is vital for the new obstacle 

reconstruction module, which extracts oriented objects even 

in serious clutter, and also allows better shape segmentation 

for recognition of pedestrians. Dense stereo information 

allows us to compute and track an unstructured elevation 

map, which provides drivable areas in the case when no lane 

markings or any other road delimiting features are present or 

visible. 

Lane detection requires edges, but the vertical profile is 

better computed from dense stereo information. The edge 

based lane detection algorithms are completely changed, 

adapted to the limited and variable viewing distance of the 

urban environment. A freeform lane detection module was 

added, in order to solve the problem of the non-standard 

geometry roads. 

The dense stereovision based sensor presented in this 

paper provides complex and accurate functionality on a 

conventional PC architecture, covering many of the problems 

presented by the urban traffic environment, and promising to 

be a valuable addition to a driving assistance system. 

II. STEREOVISION SYSTEM ARCHITECTURE 

A. Image Acquisition 

The hardware acquisition system (fig. 1) includes two JAI 

CV-M4+CL cameras with 2/3” (1380x1030) CCD sensors 

and 6.5 mm fixed focal length lenses, allowing a horizontal 

field of view (HFOV) of 72 [deg]. The cameras are mounted 

on a rigid rig with a baseline of 320 [mm] (fig. 2). The 

images are acquired at full resolution with a microEnable3-

XXL acquisition board with a maximum frame rate of 24 fps. 

 

 
The camera parameters are calibrated using a dedicated 

method optimized for high accuracy stereovision [10] using 

the full resolution images.   

The images are further enhanced by lens distortion 

correction and rectified in order to fulfill the dense stereo 

reconstruction requirements (canonical images). A down-

sampling step is used to adapt the image size to the DeepSea 

board parameters (53 pixels width) and to minimize the noise 

introduced by the digital rectification and image correction. 

The whole process is reduced to an image warping approach 

performed in a single step (fig. 1) using reverse mapping and 

bilinear interpolation [11]. An optimized implementation 

using MMX instructions and lookup tables was used in order 

to minimize the processing time. 

B. 3D Reconstruction 

The 3D reconstruction of the scene is performed using the 

DeepSea hardware board provided by TYZX [12]. The input 

of the board consists in two rectified images and the output 

can be either a disparity or a Z map (expressed in the left 

camera coordinate system). Our system uses 3D points set 

for scene representation; therefore the preferred output is the 

Z map. Using the Z coordinate value, the X and Y coordinate 

can be computed and then transformed into the car 

coordinate system using the extrinsic camera parameters 

[10]. 

C. Detection Range 

With the current system setup a detection range optimally 

suited for the urban environments is obtained (fig. 2): 

- minimum distance:  0.5 m in front of the ego car 

(approximately 2.5 m in front of the cameras) – the 

near range distance is limited by the baseline, focal 

length and maximum disparity allowed by the 

DeepSea board. 

- delimiters of the current lane  (considered 

approximately of 3,5 m wide) are visible at 1.0 m; 

- reliable detection range: 0.5 … 35 m, with a 

maximum detection range (up to witch 3D points 

can be reconstructed) of 50 m; 
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Fig. 1. The stereovision system architecture. 

Fig. 2. Detection range of the current stereo system setup. 



 

 

 

III. LANE DETECTION 

The urban environment brings new requirements for the 

lane detection system. The scenes are more complex, the 

presence of nearby vehicles and other obstacles shorten the 

visibility range, and the geometry of the lanes does not 

always comply with the clothoid model. Therefore, a serious 

method overhaul was needed. 

The first step is to detect the vertical profile and to 

separate the road obstacle points. The pitch angle and the 

vertical curvature are detected using histograms, in a manner 

similar to the Hough transform [13]. 

The highway lane detection approach required little 

information about lane markings, because it could rely 

greatly on the lane model. For the urban environment, 

however, we require a fast and robust lane marking 

extraction algorithm. 

The lane marking extraction method relies on the well-

known dark-light-dark transition detection [14]. We have to 

search for pairs of gradients of opposing sign and equal 

magnitude. We have improved the method by using a 

variable filter for computing the horizontal gradient. The size 

of the filter is the size of a standard width lane marking 

projected in the image space, and varies because of the 

perspective effect. Applying the variable width filter we 

preserve the level of detail in the distance while filtering the 

noise in the near areas.  

The gradient maxima and minima are paired and the DLD 

pairs are extracted as lane markings. The complete technique 

is described in [15]. 

 

 

 
Fig. 3. Lane marking detection – top left, original image; top right, results 

of the adaptive gradient filter; bottom, lane marking results 

 

Although the clothoid model is not always accurate for the 

urban scenario, it has several benefits, such as good results 

when the lane is delimited by simple edges (unmarked 

roads). Due to the short visibility range, we have decided to 

avoid matching the whole clothoid model on the image data, 

but to match pairs of line segments instead, in two zones: 

near and far. 

First, we make an attempt for the near zone (2m to 5 m). 

Hough transform is performed on the image edges 

corresponding to the road points, and line segments are 

extracted. Lane markings will have a higher weight in the 

Hough bins, and therefore they will have a higher priority. 

We divide then the line segments in two sets – left and right. 

The segments on the left are paired with the segments on the 

right, and the best pair is selected as our lane measurement. 

The linear measurement will update the clothoidal model 

parameters using the Extended Kalman Filter. If the linear fit 

for the near zone is successful, the same is done for the far 

zone, and the model parameters are updated again. 

 

 

 
Fig. 4. Updating the clothoidal lane profile from linear segments using 

the Extended Kalman Filter 

 

Sometimes the clothoid lane model is not suited for the 

road we wish to observe, and the detection will be incorrect. 

For these cases, a freeform lane detection system has been 

implemented. Because we don’t have strong models to guide 

our search, we have to discard the non-marking delimiters, 

and work with lane markings only. The markings are 

projected onto a top view image, and then distance transform 

is performed, to facilitate the fitting of a lane border. The left 

and the right lane borders are represented as Catmull-Rom 

splines with four control points. The lateral coordinates of 

the four control points are the model parameters, and they 

are found using a simulated annealing search strategy in the 

model space. 

 

 
Fig. 5. Top view of the lane markings and the distance transform image 

used for freeform lane matching 



 

 

 

 

 
Fig. 6. Freeform lane detection succeeds in situations where the clothoid 

model fails. 

 

 
Fig. 7. Freeform detection versus model-based detection, bird-eye view 

comparison 

IV. DRIVABLE AND NON-DRIVABLE AREAS DETECTION 

There are some urban scenarios where the 3D lane cannot 

be detected, especially when not enough lane delimiters exist 

(ex. road crossing). An alternative method must be used to 

detect elevated areas (obstacles), regions where the ego 

vehicle cannot be driven. Complementary, the obstacle-free 

road areas can be considered as drivable.  

The dense stereo engine usually reconstructs most of the 

road surface points even if lane markings are not present. 

Thus, the surface of the road can be computed by fitting a 

geometric model to the 3D data. The fitting must be 

performed in a least-square fashion (LSQ), or, more robustly, 

using a statistical approach (ex. RANSAC). The model used 

for the road is a planar one, allowing for non-zero pitch and 

roll angles of the ego car. The algorithm can be extended to 

fit complex surfaces, such as quadratic or cubic. 

The 3D data available is a set of 3D points (80,000 to 

30,000). Fitting the road surface to this set, in real-time, is 

not possible because it has a high computational complexity. 

A (bird-eye rectangular, 3x35 meters) region of interest of 

the 3D space can be represented similar to a digital elevation 

map. An image of elevations is formed, with each pixel (cell) 

having the intensity proportional to the 3D height (fig. 8.b). 

If a cell has more than one 3D point, then the greatest height 

is used. Morphological dilation is used to fill voids and 

compensate for the perspective effect (the 3D space gets 

sparser with the depth) (fig. 8.b). 

Since the LSQ fitting is sensitive to noise in the data set, a 

pre-selection of candidate road points is required. Most of 

the 3D points in front of the ego car are road points if no 

nearby large obstacle is occluding the road. A histogram of 

intensities from the lower part of the elevation image is 

computed (fig. 9) and the dominant intensity is selected. 

Candidate road points are those having the intensity close to 

the dominant one (in the range depicted by arrows in figure 

9.b). 

 

 
Fig. 8. The urban scenario (a) and the elevation image (b. initial, c. with 

morpho-dilation). Darker means more elevated. 

 

 
Fig. 9. The road level is selected from the patch in a, using the histogram 

in b. Candidate points are shown in c. The final result is presented in d 

(white means road and gray means elevated). 

   

 The road model is fitted to the selected road points in a 

LSQ fashion by minimizing the error along the vertical 

direction (vertical axis in the 3D space). A better approach 

can be used, the RANSAC algorithm, if the image quality is 

poor and a lot of noise exists in the 3D data. 

 For the final classification into drivable/non-drivable 

areas, the depth uncertainty model from [16] was extended to 

a height uncertainty model (1). The expected uncertainty 

Yerr is a function of the height Y and the depth Z of the 3D 

point, height of the camera Hcam, and the estimated depth 

uncertainty Zerr. Zerr is also a function of the system 

parameters and the expected disparity uncertainty. The 

disparity uncertainty was chosen experimentally as 1.5 

pixels, although a more complex model for estimating the 

correlation’s accuracy can be developed. 
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Each point is labeled as road if it is closer to the road 

surface than its estimated height uncertainty. The result for 

the scenario in figure 8.a is shown in figure 9.d. Another 

result is presented in figure 10, re-projected as a grid onto 

the left image.   

 

 
 

 
Fig. 10. The result for two scenes re-projected back as a grid onto the 

left image: pedestrians, sidewalks and vehicles (dark gray) are separated 

from the road surface (white). 

V. OBSTACLE DETECTION 

The road/obstacle separation is done using the lane’s 

vertical profile. The 3D points situated in a convenient 

height range above the road (for example 0 .. 1.5 meters) are 

used by the obstacle detection algorithm (fig. 11.b). 

Ideally, an obstacle detection algorithm should meet two 

opposite requirements:  

− do not split a real obstacle into smaller parts; 

− do not merge more distinct obstacles into a single one. 

Previous experience has shown that these requirements are 

hard to be fulfilled mainly due to the reconstruction errors of 

the 3D points. 

The current approach prefers to merge first more distinct 

obstacles into a single one, named occupied area, and then, 

to fragment it upon its components. 

It is supposed that the obstacles do not overlap each other; 

no obstacle is hanged up in the air above other one. In other 

words, in a top view (fig. 11.c) the obstacles are disjoint. 

Consequently, in what follows, the Y coordinate (the 

elevation) of the 3D points will be ignored and all the 

processing is done using only the X and Z coordinates (top 

view). 

To compensate the problem of the points’ density variation 

with the depth (less points for higher distances), a method 

used to divide the top view Cartesian space into smaller tiles 

with constant density is proposed (fig. 11.c). The horizontal 

field of view of the camera is divided into slices with 

constant aperture in order to compensate the sparseness on 

the X-axis. The depth range is also divided into intervals 

having bigger lengths as the distance grows in order to 

compensate the sparseness on the Z-axis. 

 
 

 

 

 

a) 

b) 

 

c) 

Fig. 11. Tiles division. a) Gray scale image, b) 3D points – perspective 

view, c) 3D points – top view; the tiles are here considerably larger for 

visibility purpose. Wrong reconstructed points can be observed in 

random places. Reconstruction error is visible as well (spread points for 

further obstacles). 

 

A specially compressed space is created (fig. 3.a).  The 

cells of the compressed space correspond to the trapezoidal 

tiles of the Cartesian space from figure 11.b. The 

compressed space is, in fact, a bi-dimensional histogram, 

each cell counting the number of 3D points found in the 

corresponding trapezoidal tile (fig. 3.a). The cells without 

any point represent free space. The cells with few points are 

also considered free (most probably those points were wrong 

reconstructed). The other cells, with enough points are 

signaling the existence of obstacles. 

 

  
a) b) 

Fig. 3. The compressed space (for scene from figure 11):  a). bi-

dimensional histogram counting 3D points, b). labeled adjacent cells. 

 
On these cells of the compressed space (having many 

points), a labeling algorithm is applied: it groups adjacent 



 

 

 

high density cells (fig. 3.b). Each group of cells, obtained by 

the labeling algorithm, represents an occupied area. The 

small groups are filtered out.   

Better obstacle detection requires the fragmentation of 

occupied areas into primitive obstacles. A primitive obstacle 

is defined as an obstacle without concavities. An obstacle 

with concavities must be fragmented into primitive obstacles. 

The steps of the fragmentation process are exemplified in 

figure 13 for an inward corner of a building. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Fig. 13. Fragmentation of occupied areas into primitive obstacles: 

 a) an occupied area, b) the labeling in the compressed space, c) sides of 

the envelope and the two primitive obstacles of the occupied area – 

compressed space, d) the two primitive obstacles – perspective view, e) 

the two primitive obstacles – top view 

 

The idea is to determine the envelope of the cells of an 

occupied area. Then for each side of the envelope, the 

concavity between the side and the occupied cells is 

determined. If it is big enough, there are in fact two primitive 

obstacles (or occupied areas) and the deepest point of the 

concavity gives the column where the division will be done. 

The two sub-parts are subject to be divided again and again 

as long as concavities are found. 

In figure 13.c the bottom side of the envelope for the cells 

in figure 13.b delimits a big concavity. For each new sub-

part, the envelope of the cells has been computed again (and 

painted as well), but without revealing big concavities for 

new division steps. 

By reconsidering the coordinates (including Y) of the 3D 

points that have filled the cells of an obstacle, the limits of 

the circumscribing box are determined. Boxes are shown in 

figure 13.d (perspective view) and figure 13.e (top view). 

As observable in figure 13.e, the bounding boxes, which 

are parallel with the coordinate system’s axes, still 

encompass free space. The real obstacle is oblique oriented 

in the coordinates system, The “silhouette” of the 3D points 

of this obstacle reveals a straight boundary. The envelope of 

the points can model this silhouette, and then, an analysis of 

its visible sides can determine the orientation. The visible 

sides are those in the front of the obstacle, toward the 

camera. If the analysis cannot determine a preponderant 

orientation of these sides, the box remains parallel with the 

axes of the coordinates system (un-oriented box). 

In figure 14.a such an envelope is shown. The algorithm 

searches chains of consecutive sides having components with 

similar slopes. If the length of the longest chain is at least 

70% from the length of the visible envelope, the obstacle 

orientation is the weighted average of the slopes of the 

chain’s sides. The weights used are the lengths of the sides. 

Along the found orientation, a rectangle is fitted on the 

visible sides. It gives the base of the oriented box of the 

obstacle. The result is show in figure 14.b.  

 

 
a) 

 
b). 

Fig. 14. Obstacle orientation: a) The computed envelope of the 3D points of 

one obstacle is shown with light gray. b). The oriented obstacles in 

perspective view 



 

 

 

 
Fig. 15. Obstacle detection results with oriented 3D boxes in the 

perspective view of the traffic scenario from figure 11.a. 

 

As future work the tracking of obstacle fragmentation 

decisions and obstacle orientation is needed. This would 

stabilize the detection over frames. Criteria based on optical 

flow/motion field would also help to merge and/or divide 

obstacles. Big obstacles that have a convex top view shape 

(envelope) but do not look like a rectangle could be divided 

also in sub-obstacles or could be described by a free shape 

polygonal model. 

VI. OBJECT CLASSIFICATION 

The object classification is performed using a new 

approach to pattern matching exploiting both 2D image 

information and 3D dense stereo information. Because the 

3D information accuracy does not allow the direct 

classification of the 3D shape, a combined 3D-2D method is 

used. The 3D object information consists of 3D position, size 

and aspect ratio, obtained from dense stereo data through the 

obstacle detection’s grouping process. The 3D data is used 

for model selection and scale estimation. Based on the 3D 

orientations of the object, the appropriate 2D views of the 

model are generated from a database of 3D models. The 

corresponding 2D image window is selected based also on 

the 3D object information. The scaled models are matched 

against the features found in the selected window using an 

elastic high speed matching based on chamfer distances.  

An important advantage in the use of dense 3D 

information is the possibility to make a better separation 

between the object and its background. This separation is 

done based on the difference in depth between the object of 

interest and the background behind it. A clear separation of 

the features belonging to the object allows the use of pattern 

matching classification techniques with a higher success rate 

since no additional noise derived from the object’s 

background will be considered in the feature set for the 

classification process.  

 

 
Fig 16. Object segmentation 

 

To be able to handle a wide variety of objects the model 

database can contain a mixture of 2D and 3D models. For 

simple objects with a rigid structure, the model database can 

contain 3D models. The orientation of the object relative to 

the camera is used in the classification process to transform 

the 3D models in 2D models using a projection according to 

the specific viewing angle. This allows the classification of 

objects that have a general orientation related to the 

observer. For objects that have a more complex shape or do 

not have a rigid structure, 2D models representing different 

points of view and different states are stored directly in the 

database. The orientation of the object can still be used to 

select the correct 2D model for these complex objects. The 

direction of movement associated with the 3D object is used 

to determine if the object is seen from the front or from the 

rear, or for pedestrians to determine which way they are 

facing.  

The model selection is done based on the 3D size and 

aspect ratio of the object (car models, truck models, 

pedestrian models, etc). 

The 3D sensorial information provides the exact 

positions and dimensions of the objects in the scene. By 

projection, the size and position of the objects in the 2D 

image can be evaluated and the model scaling factor can be 

deduced.  

 

 
Fig. 17. 2D model determination: a) Top view of 3D object with orientation 

b) Object features c) 3D model with point of view d) Model projection 

 

The use of dense stereo information in the classification 

process provides significant improvements both in speed and 

success rate for the classification process. The 3D 

information allows the direct determination of the parameters 

for the model (type, scale factor, approximate position) 

which leads to a reduction in computational time. The 

selection of relevant features for the object (background 

separation) improves the success rate of the classification 

system. 

 

 
Fig 18. Results: a) Object selection (ROI selection) b) Used 3D information 

c) Image feature selection d) Object orientation e) Edge selection f) 

distance transform g) Result of pattern matching h) Model used 



 

 

 

The same approach has been successfully used in the 

case of pedestrian classification. The only modification in 

the process is the use of a hierarchical model database to 

reduce the number of pedestrian models used in the pattern 

matching stage. 

 

 
Fig.19 Pedestrian classification. 

VII. EXPERIMENTAL RESULTS 

The dense stereovision based sensorial system was 

subjected to extensive test situations, targeted for each 

algorithm. The tests included recorded urban images from 

Wolfsburg (Germany) and Cluj Napoca (Romania), in light, 

medium and heavy traffic, in different times of the day and 

different weather conditions. The system was also tested 

online (on board of the vehicle, while driving) in the same 

situations. The lane detection, object detection and 

pedestrian detection algorithms performed correctly under a 

vast majority of the test situations, and the failed test results 

provided valuable information for future algorithm 

improvement. The detection range was limited by the stereo 

reconstruction capability of 6.5 mm focal length cameras to 

35 m, a tradeoff for an increase in the field of view. The time 

performance of the whole processing cycle on Pentium Core 

2 Duo E6600 architecture (2.4 GHz) is 20 frames per 

second. 

VIII. CONCLUSIONS 

We have proposed and implemented a sensor system 

dedicated to urban driving assistance applications, built on 

the infrastructure of a dense stereovision engine. The dense 

stereo information provides the foundation for a new object 

reconstruction algorithm, dedicated to identify objects in the 

city clutter, and also allows the identification of drivable/non 

drivable areas in the case when no lane delimiting 

information is visible. Lane detection takes advantage of a 

better vertical profile provided by dense stereo, but its model 

matching algorithms were also changed to cope with the 

urban situations. Freeform lane border estimation was 

introduced to handle the non-clothoidal road geometries. 

The results give reasons to believe that dense stereovision 

is a valuable tool for the driving assistance sensorial systems, 

and draw the directions of the future work: the lane detection 

system will be enhanced by adding a curb extraction 

algorithm, and by combining the freeform and model based 

results using a fusion module; the object detection will 

benefit from orientation-based tracking; the drivable/non 

drivable area results will be fused with the obstacle detection 

and with the lane detection results. 
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