
  

  

Abstract—An approach for the detection of straight and 

curved curbs (border of relevant traffic isles, sidewalks, etc) is 

presented, in the context of urban driving assistance systems. A 

rectangular elevation map is built from 3D dense stereo data. 

Edge detection is applied to the elevation map in order to 

highlight height variations. We propose a method to reduce 

significantly the 3D noise from dense stereo, using a multi-

frame persistence map: temporal filtering is performed for edge 

points, based on the ego car motion, and only persistent points 

are validated. The Hough accumulator for lines is built with the 

persistent edge points. A scheme for extracting straight curbs 

(as curb segments) and curved curbs (as chains of curb 

segments) is proposed. Each curb segment is refined using a 

RANSAC approach to fit optimally the 3D data of the curb. The 

algorithm was evaluated in an urban scenario. It works in real-

time and provides robust detection of curbs. 

I. INTRODUCTION 

URBS are an important driving area delimiter in urban 

scenarios. Compared to lane markings, curbs have 

various “looks” and are harder to detect from monocular 

intensity images.  

Existing stereo-based systems focus mainly on detecting 

3D obstacles (vehicles, pedestrians etc.), and curbs are 

usually considered road inliers. Most of the existing 

algorithms try to compute the road/lane surface, and then use 

it to discriminate between road and obstacle points. 

Disparity space-based algorithms take as input the 

standard output of stereo matching: the disparity map. The 

“v-disparity” [1] approach is well known and used to detect 

the road surface in a variety of applications [2].  

3D space-based algorithms are often used for ego-pose 

estimation [3], [4], but also for lane and obstacle detection 

[5], [6], road, traffic isles and obstacle detection [7], or curb 

detection [8], [9].  

The 3D space is represented as an elevation map and a 

quadratic road surface is computed in [7]. Obstacle and 

traffic isles are detected based on their position and density 

relative to the road surface. Curb points can be extracted as 

the borders of traffic isles. However, if the road surface 

cannot be fitted (lack of texture or non-quadratic surface) 

then traffic isles are not detected. 

Approaches presented in [8] and [9] deal explicitly with 
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curb detection. Both methods are based on the extraction of 

straight curbs with the Hough transform. 

Image edge points are detected in [9]. A weight is 

computed, for each edge point, as a function of the image 

brightness gradient and the 3D elevation gradient. These 

weights are used for voting in the Hough accumulator. One 

dominant straight curb (per scene) is extracted from the 

Hough accumulator.  

The 3D space, from dense stereo, is transformed into an 

elevation map in [8]. Edges are detected on the elevation 

map and the Hough accumulator is built. At most two 

straight curbs are extracted from the accumulator. A curb is 

considered valid if it has a specific height variation profile.  

Both methods [8] and [9] detect curbs as lines in the space 

of interest, without extracting the actual curb segments along 

these lines. In many scenes, real curbs are segments (with 

visible ends, for instance in intersections) in the space of 

interest. 

The algorithm that will be presented in this paper is 

related to the approach from [8], but it has several key 

improvements: 

• It uses (multi-frame) temporal filtering of curb points, 

thus fewer false curbs are detected.  

• It locates curb segments along linear curbs extracted 

with Hough, thus providing a better description of 

curbs.  

• It extracts curved curbs (often present in urban 

scenes) as chains of segments.  

Curbs are detected based on local derivatives of the 

elevation map, so the shape of the road surface or varying 

pitch and roll angles are irrelevant (no additional processing 

time is spent).   

The curb detection algorithm will be presented next in 

section II, results and an extended evaluation in section III 

and conclusions in IV. 

II. THE CURB DETECTION ALGORITHM 

A. Overview 

The proposed algorithm is robust if the following 

assumptions are fulfilled: 

• 3D points are reconstructed around the curb and noise 

is not predominant, 

• A significant height variation (elevation gradient) is 

present around the curb (at least 5 cm) and the height 

variation is sharp (like a step function). 
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The algorithm has the following main steps: 

1. Building the Digital Elevation Map (DEM). 

2. Detection of DEM edges: points with specific 3D 

height variation are detected.  

3. Temporal filtering of DEM edges: only edge points 

static relative to the road are validated, based on the 

motion model of the ego vehicle. A multi-frame 

persistence map is proposed. 

4. Extraction of straight and curved curbs from the 

Hough accumulator.  

Compared to the approach presented in [8], only the first 

two steps are similar, while steps 3 and 4 are novel. 

B. Building the Digital Elevation Map (DEM) 

We used the DEM representation presented in [7]. Some 

modifications were needed for the problem of curb detection. 

 A region of interest, from the set of 3D points (Fig. 1), is 

transformed into a rectangular DEM (Fig. 2). Each map cell 

stores a single height value. Contrary to [7], the lowest 

height of the 3D points contained by a cell is stored (instead 

of the highest). This is necessary to avoid the situation when 

3D points from floating objects (traffic signs, trees etc) 

overwrite the height of the underlying curb points.  

 

 

 
Fig.  1. The left image (top) and a perspective view of the 3D set of 

points from dense stereo (bottom), brighter means closer. 

 

The region of interest (ROI) is smaller than in [7]. 

Considering the road plane from calibration, the ROI vertical 

limits (Y-axis) are -2 to +2 meters, lateral (X-axis) -6 to +6 

meters, and along the depth (Z-axis) from 0 up to 10 meters. 

We selected these limits for several reasons. The vertical 

span guaranties that curb points are stored in the DEM even 

for extreme pitch and roll angle of road relative to ego car 

(extreme uphill or downhill of up to 20% slope), or various 

road geometries (as long as they fit in the vertical interval). 

The depth limit of the ROI has to fulfill two constraints:  

height variations of 5 centimeters should be detectable on the 

DEM, and enough 3D points are reconstructed so the DEM 

is not sparse along the depth (the height uncertainty model 

and depth resolution model from [7] were applied to our 

stereo configuration).  

A DEM cell has a size of 10 cm x 10 cm in the XZ world 

plane. This size provides a good tradeoff between the overall 

processing time and the accuracy of 3D curbs localization. 

The 3D height was translated and scaled for a better 

visualization of the DEM (road level from system calibration 

has a gray value 128 in the DEM). Only heights around the 

road (1 meter band) are displayed correctly (for the images 

in this paper), due to a limited number of gray values (256). 

This has no influence upon the detection of curbs because 

the whole range of heights is used for processing.       
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                             a.                                  b. 

Fig. 2. The DEM in a: darker means higher in 3D. The validity 

map in b shows which cells (white) are valid (contain 3D data). 

C. Detection of DEM edges 

The main feature of a curb point is that the 3D height 

(elevation) changes sharply around the point. Curb points 

should be included in the set of edge points of the DEM.  

We used a robust method (Canny, [10]) for detecting 

edges (Fig. 3). Only edges having the gradient in a desired 

interval (equivalent to a 3D variation between 5 and 35 

centimeters) are detected.  

 
                      Z(depth) 

 
                                  X 

Fig. 3. Edges detected on the DEM from figure 2. The only areas 

where height variations exist are marked with red ellipses (in the 

3D scene: the left-side car, the pedestrian and the right-side curb). 

The other edge points represent false height variations. 
 

Some false bumps are reconstructed on the road surface, 

causing false edges (fig. 3). This noise appears due to low-

accuracy reconstruction of the road surface (weak texture 

combined with image noise). It can make the process of 

curbs extraction quite difficult, because the noise has height 

variations similar to small curbs. This is the main reason 

why, in [8], at most two curbs were detected (to avoid an 

increased rate of false detections). 
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D. Temporal filtering of DEM edges based on multi-

frame persistence 

We propose a temporal filtering process to decrease the 

presence of noise, based on the two assumptions: 

• Curbs are static related to the road surface: if the ego 

motion between successive frames is compensated, then 

curb points from the current frame should overlap curb 

points from the previous frame.  

• Weak road texture combined with image noise will 

cause randomly located DEM edge points. These points 

should have different locations between consecutive 

frames. 

Coordinates from the current reference frame O(t) can be 

transformed into the previous reference frame O(t-1), 

assuming the translation d and rotation angle α are known 

(Fig. 4). The ego car’s standard speed and yaw-rate sensors 

can be used to estimate these parameters. The following 

motion model was used: the ego has a circular trajectory 

between successive frames, and the arc length and radius are 

computed based on the ego car speed v, yaw-rate value γ and 

frame relative timestamp ∆t. The yaw-rate sensor provides 

the rotation angle, and the translation is computed 

geometrically: 
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Fig. 4. Ego motion is expressed as the Euclidian distance between 

origins and relative angle between axes.  

 

First, let us define the concept of multi-frame persistence 

map (PM). The PM is a rectangular map of the same size as 

the DEM. A cell (i,j) (i for the Z direction and j for X) of PM 

shows the lifetime (in consecutive frames) of DEM cell (i,j): 

for how many consecutive frames was the cell detected as an 

edge point, in a global reference frame (the same edge point 

relative to the road, along the sequence of frames). 

The persistence map PMT for the current frame is built 

from the PMT-1 of the previous frame and the set of edge 

points detected on the DEMT of the current frame.  

For each location (i, j) of PMT: 

• If (i,j) is not an edge point then PMT(i,j)=0;  

• Otherwise, if (i,j) is edge then: 

1. Compute the coordinates of current frame point 

(i, j) in the previous frame, as real numbers (i’, 

j’). 

2. PMT(i,j)=MAXIMUM (W) + 1, where the set W 

contains the persistence values of the previous 

frame PMT-1 for the 4 closest neighbors of (i’,j’), 
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Using the maximum persistence of the four points closest 

(instead of a single point) to the real coordinates from the 

previous frame is required to compensate some sources of 

errors: 

• Possible lack of accuracy from the ego sensors, 

• Most of the time, integer coordinates (i,j) from DEMT 

do not have an correspondent DEMT-1 location with 

integer coordinates (i’, j’), 

• Pitch angle variation might occur between frames (due 

to road bumps etc), causing small depth shifts of the 

coordinates between successive frames. Assuming an 

extreme pitch variation α of 5 degrees, the shift along 

the depth Z, at 10 meters, is 10*(1-cos(α))=0.04 

meters, less than half the DEM cell size. 

Once the persistence map PM is computed, candidate curb 

points should be selected as points having the persistency 

higher than a threshold T. A value too low for T will cause 

many false curb points to occur, while a value too high will 

cause unjustified delay for detecting true curb points. We 

performed the following experiment for selecting the optimal 

T: a sequence of 200 frames was acquired while driving 

through an empty parking lot, without any objects or curbs in 

the analyzed ROI (Fig. 5). The road surface had normal 

texture, with common features such as braking traces, 

different color patches etc.  

 

 
Fig. 5. The first frame of the sequence used.  

 

All detected edge points are false curb points, due to the 

poor accuracy of the 3D reconstructed road. A total number 

of 30421 edge points were detected (an average of 152 

points per frame). The total number of edge points having 

the same persistence value was evaluated (Fig. 6) relative to 
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the total number of edge points. 22.6% persist for two 

frames, 7.8% persist for three frames, 3.56% persist for four 

frames, and less than 1.5% points persist more than four 

frames. A value of 3 or 4 frames is optimal for the threshold 

T, greatly reducing the number of false edge points (Fig. 7). 

The only downside is that a true curb point is validated only 

after T frames since it entered the analyzed ROI. However, 

this has minor influence upon detection (no curbs are 

missed). Even for a speed of 50km/h, it will take about 18 

frames for the ego car to reach a curb point placed at the 

maximum depth. 

 

 
Fig. 6. The percentage of points N as a function of the persistence 

value P. 
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a.               X                  b. 

  
c.                                   d. 

Fig. 7. The edges from the DEM shown in figure 2 validated using 

a persistency threshold T of one frame (no filtering, in a), two 

frames (b), three frames (c), and four frames (d).   

 

Another positive effect of the proposed temporal filtering 

is the rejection of most edges from dynamic scene 

components (cars, pedestrians, etc). This simplifies the 

process of curbs extraction from the Hough accumulator, 

since most of outliers are rejected from the set of curb points. 

E. Extraction of curbs from the Hough accumulator 

The Hough accumulator [11] is built. Lines are 

represented in the (r,θ) space and we used a resolution of 1 

degree for the angle θ (0...360 degrees) and a resolution of 1 

pixel for r. Local maxima of the accumulator are relevant 

lines that might contain curb segments. However, the Hough 

accumulator does not provide any clues about how curb 

points are placed along the relevant lines. These points can 

be scattered along the line (most likely noise) or can form 

continuous chains (possible curb segments). Curb segments 

can be extracted from the relevant lines by analyzing the 

height variation profile of each line. 

First, a robust way to estimate the height variation for a 

line will be presented. After this, we will present a scheme to 

extract curb segments and chains of curb segments. 

1) The line variation profile 

Each line point must be checked to see if it is a curb point. 

We assume a curb point has two main features: 

• Its height variation is in a specific interval (5..35 

centimeters), 

• The height variation is positive from the roadside of the 

curb to the opposite side (sidewalk or traffic isle).  

The roadside of the curb can be detected geometrically 

since the road is placed on the same side as the ego vehicle 

(under normal circumstances) relative to the curb.  

Computing the height variation for a line point can be 

unstable if only points adjacent to the line are used (a simple 

gradient, Sobel mask). Although the gradient was robust 

enough to detect height variations as edges, it is less accurate 

for estimating the magnitude of the variation. It measures the 

overall variation: if the supporting road surface of the curb 

has a large local slope, this slope will contribute to the 

estimated variation, making it larger than the actual 

variation.  

A larger area must be used in order to have a robust result. 

The shape of the area cannot be rectangular since it would 

not provide symmetry for all possible line orientations. We 

used a circular mask (5x5 or 7x7 pixels, similar to corner 

detection algorithms). The height variation for one point is 

computed as a difference function between points placed on 

the same side as the ego car (relative to the line) and the 

opposite points, inside the circular nucleus.  

An example with real data is presented in figure 8.b: 

pixels inside the mask with their values, the line pixels drawn 

with black and, in the center, the current point x for which 

the computation is performed. 

 
          a.                       b. 

Fig. 8. The circular mask (7x7 pixels, in a) used for computing the 

height variation for the central point x. An example with real data 

from the DEM is shown in b, line pixels are drawn with black. 
 

The median values Hm(A) and Hm(B) are computed for 

regions A, respectively B. The height variation for the line 

point x is computed as Hm(A)-Hm(B), if A is on the same 

side as the ego car, or Hm(B)-Hm(A) otherwise (B is on the 

ego’s side).  

Finally, the height variation profile of each relevant line is 

evaluated by computing the height variation for each line 

point. Only positive height variations (between 5 and 35 

centimeters) of feasible curb points are stored in the profile.  



  

2) Extracting chains of curb segments 

One requirement for this process is to avoid multiple 

responses for the same curb. To fulfill this, the votes of 

extracted curb segments are subtracted from the 

accumulator. Another requirement is to detect chains of curb 

segments belonging to the same curved curb.  

The scheme of curb segments extraction is: 

1. Select the global maximum L of the Hough 

accumulator H. 

a. If H(L) is above a threshold TL then: 

I. Compute the height variation profile HP of L. 

II. Extract the dominant curb segment C 

represented by the largest continuous interval 

of curb points in the HP (of at least TL points). 

Recursively add curb segments at each end of 

C (detailed next). 

III. Compute all pairs of (r,θ) for each edge point 

of the detected chain of curb segments, and 

subtract one vote from correspondent 

accumulator locations.   

b. Otherwise stop. 

2. Repeat step 1. 

Step II is the core of the scheme. If C is placed on a 

curved curb then it is most likely that its extremities are the 

starts of adjacent segments. All half-lines are extracted, for 

each extremity, having the following features: they contain 

the extremity, have a Hough score above TL, and form an 

obtuse angle with the segment C. Starting from the extremity, 

the best (based on length and the height profile variation) 

interval of curb points is searched along the half lines. If it 

contains at least TL points then the segment associated to this 

interval is selected as the adjacent curb segment of the 

extremity. Then, this step is applied recursively to the newly 

added segments, for their unconnected extremities.   

The value of TL was 10 edge points, equivalent of at least 

1-meter 3D length. A different value can be used 

(lower/greater), depending on the quality of stereo 

reconstruction. Some particular urban scene might have, 

beside real curbs, curb-like items in the background of real 

curbs. Such artifacts can be eliminated by comparing their 

3D location with the location of the closest curbs to the ego 

car (simple geometric constraints). 

 

 
Fig. 9. A curved curb is approximated as a chain of curb segments. 

The first segment is extended with the longest curb segment from 

the set of candidate half-lines (only few are drawn), at each end. 

 

Each curb, or chain of curb segments, is mapped back 

from the DEM space into the 3D space, and projected onto 

the left image for visualization. The steps presented so far 

provide a good lateral and longitudinal localization of curbs. 

Without the detection of the vertical orientation/location of 

each segment, the results are less robust (Fig. 11).  
 

 
Fig. 10. The curb segment projected back onto the left image, for 

the scene shown in figure 2. 

 
Fig. 11. The chain of curb segments projected back onto the left 

image (the vertical coordinate of curb points is the road level from 

calibration), for the scene analyzed in figure 9. 

 

We consider two DEM lines for each curb segment (one 

on each side of the curb segment as the adjacent surfaces of 

the curb, presumably road and sidewalk/traffic isle). 

RANSAC is applied, on the height data around the curb 

segment, in the DEM, to compute these lines, based on 

several constraints: two points per sample for each line, lines 

from adjacent segments must have the same height for 

junctions, lines associated with a segment are parallel and 

the vertical distance between them is the average height 

variation of the curb. The average height variation of the 

curb is the median of the height variation profile from the 

dominant curb segment. The configuration with the best 

score is selected as the best vertical localization of the curb. 

A good 3D alignment is obtained (Fig. 12). 

 

 
Fig. 12. Better results are obtained using vertical alignment of each 

curb segment. 

III. RESULTS 

The algorithm was implemented in C++. The dense 3D 

data was acquired using a calibrated stereo rig with grayscale 

cameras and a commercial dense stereo board. We used 

cameras with a large horizontal field of view (about 67 

degrees), appropriate for urban scenes.  



  

A processing time around 8-9 ms was achieved for the 

algorithm (on Pentium 4 Dual Core processor).  

Four different scenes with curbs of various heights were 

used for the first criterion. The computed height variation 

was accurate (Table 1), with a maximum error of 5%. 
 

Table 1 

Scene number 1 2 3 4 

Real height (cm) 5.0 7.0 11.0 14.0 

Computed height (cm) 4.8 7.3 10.6 13.8 
 

The algorithm was evaluated on a sequence of 2050 

images and has a detection rate of about 96% of the total 

number of curbs. Two false curbs appeared on the whole 

sequence (Fig. 14). They were caused by false elevations 

(large areas) in the set of 3D points provided by dense 

stereo. The rate of false curbs is related to the quality of the 

stereo reconstruction. 

Detection of non-sharp curbs (so called “traversable”) is 

not stable because a 3x3 mask is used for edge detection. A 

possible solution with multiple mask sizes will be studied in 

the future. 
 

 

 

 

 

 
Fig. 13. Various 3D curbs projected onto the left image. 

 
Fig. 14. A scene with a false curb. 

IV. CONCLUSIONS 

A novel curb detection algorithm was presented. It deals 

with a problem less approached, the detection of straight and 

curved curbs in the urban environment. The proposed 

algorithm works in real-time. It can be used in a variety of 

applications that require detection of road-elevated 

delimiters such as curbs: from simple lateral ego-vehicle 

control to complex path planning.   

Future research is needed for improving the generality of 

the algorithm, by providing solutions for scenarios with poor 

3D data. 
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