
 

Abstract—This paper presents a fast and robust side lane
and guardrail detection technique, based on the 3D
information obtained from stereovision and on the already
detected geometry of the current lane. The 3D points that
belong to the road surface are selected using the road surface
parameters inferred from the current lane detection, and they
are used for detection of the side lane. The 3D points above the
road are used in the detection of guardrails and fences, with
the same technique. In both cases, the point sets are smoothed
in an attempt to compensate for the variable density, and then
analyzed through lateral distance histograms. The peaks of the
histograms locate the position of the side lane delimiters and
fences, while the shape of the histogram is used for the
validation of the side lane or fence’s existence. The results are
then tracked for increased stability.

I. INTRODUCTION

n knowing the position of our vehicle on the road, the
estimation of the current lane’s geometry and position is

vital. The second most important piece of information about
our position is the geometry of the neighboring lanes and/or
the guardrails and fences neighboring the road. This
knowledge becomes important because:

1. The driving assistance system will have a more
detailed information about the environment, which
otherwise will be composed only of the current lane
and the detected obstacles. In a situation when a
collision is imminent on the current lane (an
obstacle is in front and the breaking system reacts
too slowly) the system must know if there is
possible lane change, and where. Knowing about
the neighboring lanes and guardrails helps making
the right decision.

2. In lane tracking, the situation of lane change will
be better handled if the characteristics of the lane
we switch to are known before we make the
transition. In the absence of any information about
neighboring lanes, the new lane is predicted as
having the same width, leading to a possible error.
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3. Knowledge about neighboring lanes will help the
obstacle detection and tracking routines. Deciding
to track objects that are only on our lane is not
enough, because we may miss a lot of useful
information. Knowledge about more lanes can help
us identify all objects on the road, therefore all
vehicles, and tracking them reliably.

4. The guardrails are, basically, obstacles, which
must be detected and tracked. The obstacle
detection/tracking routines, however, expect finite
size obstacles, which can be modeled as cuboids,
and they will not output robust results when
confronted to the continuous nature of the guard
rails. Thus, a special detection technique must be
developed.

This paper presents a unified approach for the detection
of side lanes and of continuous elevated structures
neighboring the road, such as guardrails and fences. The
key aspect of this approach is the use of 3D information
provided by stereo processing.

The premises of this work are the stereo-based image
processing environment presented in [4] and [5], which
delivers real-time high accuracy edge-based 3D information
using medium to high resolution grayscale images, and the
stereovision-based lane detection algorithm, presented in
[3], which reliably and accurately detects the current lane
(the lane we are currently on). The stereovision setup and
the reconstruction algorithm provide usable 3D points in a
range of 10 – 100 m (by usable we mean that they have less
than 10% distance error). The rate of false correspondence
(leading to false points) is very low, due to the fact that only
edge points are used for reconstruction, and the totally
horizontal edges are eliminated.

II. MULTILANE MODEL

The current lane is modeled as a 3D surface, defined by
the vertical and horizontal clothoid curves. Current lane
detection means the continuous estimation of the vector
XC=(W, ch,0 , ch,1 , cv,0 ,Xcw , α, γ, �)T , composed of the
following parameters (model similar to the one presented in
[1], [2]):

W – the width of the lane
ch,0 – horizontal curvature of the lane
ch,1 – variation of the horizontal curvature of the lane
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cv,0 – vertical curvature of the lane
Xcw – the lateral displacement of the car reference system

from the lane reference system (lane center)
α, γ, ψ are the pitch, roll and yaw angles of the car (the

rotation angles between the car reference system and the
world reference system).

Fig. 1. The lane model.

These parameters describe the lane position and
geometry through the following equations:
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Equation (1) describes the horizontal profile - the
variation of the lateral position (X) of the center of the lane
with the distance Z. Equations (2) and (3) are expressing
the lateral positions of the lane borders. Equation (4)
describes the vertical position for any point on the road. The
first two terms compose what we’ll call the vertical profile,
while the last term is due to the roll angle.

The current lane, described by the vector XC and the
equations 1-4 is already detected before we attempt the
detection of side lanes, which we consider to be described
by their width alone (orientation and curvature is shared by
all lanes). The problem we propose to solve is the problem
of the two neighboring lanes. We make this decision on the
base of the following reasons:

a) This situation covers a very large number of road
situations (its generality is high).

b) The visual information decreases with the lateral
distance from the camera. The current lane is viewed best;
the neighboring lanes have a smaller yet decent amount of
information, and another type of lanes will be almost
invisible

c) The Field of View of the camera imposes a minimum

visibility distance (the distance from which something
enters in the picture) on the lane borders, which increases
with the lateral distance. Our stereo setup uses 16mm focal
length lenses and 2/3” CCD cameras, which translates in a
30° lateral field of view. This field of view gives, for the
average 3.5 m wide lane, the following minimum visibility
distances: 6.5 m for the current lane delimiters, 19.5 m for
the neighboring lane delimiters, and 32.6 m for the lanes
further beyond.

Add to that the perspective effect, which makes the 3D
features in the image to be smaller as their distance
increases, and the result is that the third lane is almost
impossible to see.

As a consequence, we define the road by the central curve
(vertical and horizontal profile), a roll angle � and the
number and width of its lanes. Lanes are adjacent, and
therefore they cannot have a different curvature, a different
vertical profile, a.s.o. Therefore, our target scenario (current
lane plus neighboring lanes) will be defined by the
following vector: X = (Xcurrent WL WR)T – the current lane
geometry plus the widths of the neighboring lanes.

The multiple lane detection algorithm has two steps. The
first is the detection of the current lane, using the method
described in [3]. If the current lane is not available, there
will be no search for the side lanes. Step two, the actual
detection of the side lanes must deliver the following
information:
- A side lane exists or not. This is the most important
aspect: establishing the existence of a side lane
- The width of the side lane

A tracking algorithm will be applied after the side lane’s
detection, in order to filter the detection results and increase
stability of the output.

III. ALGORITHM DESCRIPTION

A. Preparing the input data

The algorithm takes as input the set of 3D points and the
parameters of the horizontal profile of the current lane
(width, lateral offset, yaw angle, curvature and curvature
variation). Out of the set of 3D points, only those that
belong to the road surface are selected – those that comply
with equation (4) whose parameters are already detected.

We assume that the side lanes have the same orientation
as the current lane. This means that the yaw angle, the
curvature and the curvature variation are the same. We
shall transform the 3D space so that we shall have a space
whose axis of symmetry is the central curve of the current
lane, the one described by the equation (1).

Figure 2 shows a bird-eye view of an idealized set of 3D
road points, with the apparent curvature. Figure 3 shows the



effect of transforming the 3D space, by subtracting from the
X coordinate of each point the value XC given by the
equation (1) applied to the Z coordinate of the point.
Basically, we straighten the curved point set, as we already
know the curvature and orientation. If the assumptions were
correct (that is, each side lane has the same orientation as
the current lane, and the current lane is correctly detected)
then the points belonging to lane delimiters must form, after
space transformation, straight lines parallel to the Z axis of
the coordinate system.

Fig. 2. Road points in the initial 3D space

Fig. 3. Road points after space warping

After the warping of the 3D space to compensate for the
curvature of the lanes, processing becomes much simpler.
However, we still have the problem of the 3D point
distribution, which is not uniform. We would like to have a
set of points which is

- Distributed as uniformly as possible in the XOZ plane
- Completely contained in the XOZ plane
The last condition is somehow hard to understand. If we

take the Y coordinate of each point out of consideration,
each point is contained in the XOZ plane. But the problem
is that the 3D space being continuous, not discrete, two
points having similar X and Z coordinates, but different Y
coordinates, will also become two points in the XOZ plane,
even if they cannot be distinguished if seen in bird-eye
projection. We don’t want to have these “hidden” points in
the future processing.

The second condition has given the idea for the solution
of both problems. We will construct a discrete 3D space, by
representing the space as a matrix of cells. The size of the

cells is 20 cm on the Z-axis and 10 cm on the X-axis. Then,
for each 3D point on the road surface (its Y coordinate
being thus in a certain interval), we find the corresponding
cell. If the cell is free (no point has been allocated to this
cell before), we mark the cell as taken, and if the cell was
previously taken we do nothing. This way, it doesn’t matter
how many points fall in the same cell, the only difference
being whether we have a point in the cell or not. After all
the points have been allocated, we take the cell matrix and
transform the coordinates of the “full” cells into 3D
coordinates. In this way we obtain a set of points having
discrete 3D coordinates, and a distribution that is a lot more
uniform than the original set.

a) b)

c) d)
Fig. 4. Increasing the uniformity of the set of points: a)

Original set of points, b) The original set of points and the
discrete cell grid, c) The grid with the full and empty cells,
d) The full cells are transformed in 3D points with discrete

coordinates

Figure 5 shows a real set of stereovision-generated 3D
road points, and figure 6 shows the filtered points inserted
in search areas for the left and right side lane delimiters.
The search areas are given by the prediction and by the
prediction’s uncertainty.

Fig. 5. A set of real 3D points viewed from above



Fig. 6. The filtered set, in search areas for the left and right
side lane

This basic technique of obtaining uniform 3D points can
be altered in order to accommodate point classification
techniques. The classification techniques are image space-
based analysis algorithms, aimed at finding relevant lane
delimiting features. One such classification algorithm is the
search for dark-light-dark patterns, which indicate possible
lane markings, which have higher priority over the rest of
the points. The results of the classification algorithms are
used to assign to each road 3D point a numerical weight in
the interval (0.1, 1).

The cell matrix will hold, instead of true/false values
(indicating whether a point has been inserted in the cell or
not), weights. The initial value of each cell is zero,
indicating that the cell is free. When processing the array of
original 3D points, the corresponding cell for the point is
computed. If the value of the cell is zero, the cell will take
the value of the class weight of the 3D point. If the cell has
a non-zero value, meaning that a point has already been
inserted, the weight of the point is compared to the weight
of the cell, and the weight of the cell will become the
maximum of the two values. Thus, if more than one point
corresponds to a grid cell, the weight of the cell is the
maximum of the point weights.

After all the points have been processed, the set of
discrete 3D points is created. The coordinates will be
extracted as already described in the basic method, but an
additional vector will be created, containing the weights of
the points, these weights being the values of the cells.

Therefore, the input data for the side lane detection
algorithm is composed of three vectors: X[], Z[] and W[],
containing the warped discrete coordinates of the 3D points
and their corresponding weights.

B. Side lane localization and validation

The filtered points that fall in search areas for the left and
the right side lane (search areas are generated by prediction,
using the past results and the associated uncertainty) are
used for building two histograms. The first histogram
represents the number of points for each discrete X-
coordinate of the discrete 3D space, and the second one is
the weighted histogram, where each entry represents the

sum of weights of the points corresponding to an X
coordinate of the discrete space.

The following image shows the two half-histograms for
the right side lane search area. The weighted histogram has
lower amplitude, because the weights are less or equal to 1.

Fig. 7. The point count histogram (dotted line) and the
weight sum histogram (continuous line) for the right side

lane search area

In what follows, we’ll keep our discussion to a single
search area (a single side lane). The point count histogram
is analyzed, and the maximum value, HMax, along with its
position XMax is computed.

Fig. 8. The maximum of the histogram and its position

After finding the maximum, the histogram is smoothed
by convolving it with a Gaussian kernel, on each side of the
maximum. We don’t perform a full convolution on the
histogram because we don’t want to move the position or to
change the value of the maximum (as it may be a very sharp
peak, if the points are very well aligned). After the
smoothing, we perform a descent from the maximum
position towards the left and the right, as long as the
descending trend is kept. Therefore, we will find the
maximum height on the left side and on the right side of the
maximum, until we reach a local minimum. Also, besides
the heights, the lengths of the descending paths are
computed. Figure 9 illustrates the process:

Fig. 9. Computing the height of the maximum continuous
descent and the length of the way down



We select for future analysis the maximum descent height
(out of the two possible paths), along with its corresponding
length. Let’s denote them by MaxHeight and MaxPath.
Therefore, the parameters of the point count histogram are
HMax, XMax, MaxHeight, MaxPath.

The weight sum histogram is also searched for the
maximum and the maximum position. Let’s denote them
WMax and WXMax.

These parameters are the basis for the following
reasoning:

If HMax < 15, the side lane is invalidated (no side lane)
If HMax > 50, the side lane is considered valid
If HMax is in the interval 15..50, the condition to become

valid is:

MaxHeight > 10 and 7.0>
MaxPath

MaxHeight

This means that the maximum descent must be higher
than a threshold and the descent must be steep.

If these conditions have been met, and the lane is valid so
far, we analyze the position of the point count histogram
maximum (XMax) with respect to the position of the weight
sum histogram maximum (WXMax). If the distance between
these positions is higher than 3, the lane is invalidated.
Otherwise, the lane is considered valid, and the position
final position of the side lane delimiter will be given by the
position of the weight histogram maximum.

Fig. 10. The position of the side lane delimiter (heavy
dashed line), is the position of the weight histogram

maximum

C. Using the obstacles in side lane validation

A situation in which a side lane is invalidated is when an
obstacle is present on it, in the interval (15-30m). This is
the interval of maximum visibility of the side lane, and
therefore it is highly improbable that correct side lane
detection can be performed. The obstacles are detected by
grouping the 3D points above the road surface into cuboids,
as presented in [4].

Fig. 11. Invalidating a side lane due to the presence of an
obstacle in a key point

IV. DETECTION OF GUARDRAILS AND FENCES

Guardrails and fences are continuous obstacle-type
objects that go alongside of the road. Due to their
continuous nature, it is not feasible to attempt their
detection/tracking in the same way we detect/track a
vehicle, by grouping the 3D points into discrete cuboids.
This approach will generate a set of objects formed from
pieces of guardrail, objects that will differ greatly from one
frame to another, and which are impossible to track.

Fig. 12. Side lane and a guardrail

The guard rail and the side lane delimiter have a lot of
properties in common. They are continuous structures, and
they go alongside of the road – they share a common
orientation with the already detected current lane.
Therefore, they both are described by their lateral position
only.

The algorithm described in this paper detects the guard
rails in the same way it detects side lanes. The only
difference is the input data: instead of feeding it points that
are contained in the road surface, we feed it points that are
above the road surface. The histogram analysis will detect
the long, continuous structures of elevated points as spikes,
in the same way the side lane delimiters are detected.

V. RESULTS

The side lane and guardrail detection system has been
integrated in the Stereo CAmera-Based Object Recognition



(SCABOR) application, application that is able to perform
online (onboard) and offline (on recorded sequences)
processing. The edge-based stereovision engine delivers
about 5000 reliable 3D points per frame (frame size is
640x480), which allows the high level algorithms, such as
the side lane detection, to operate very fast (the side lane
detection routine takes less than 5 ms). The main target
scenario is the highway (figure 13, 14), a structured
environment with high-speed traveling velocities. The
algorithm’s performance is best in the designated target
environment, correctly recognizing the side lane width and
the guardrail’s position with about 10 cm errors. However,
the system produces dependable results also on rural roads,
marked or even non-marked (figure 15), or on pre-urban
roads (figure 16).

Fig. 13. Guard rail and side lane detected on highway

Fig. 14. Both neighboring lanes detected on highway

Fig. 15. Left side lane detected on a non-marked rural road

Fig. 16. Two guard rails detected on a pre-urban road

The quality of the side lane and guardrail results depends
on the quality of the stereo reconstruction, which in turn
depends on the quality of the camera calibration. The side
structures, lane delimiters or guardrails, are closer to the
periphery of the image, therefore subjected to a greater
extent to radial distortion. They also tend to be more
horizontal in the image, and thus more likely to be falsely
matched. A careful calibration and a good image quality
and resolution are the prerequisites for the algorithm’s
success.

VI. CONCLUSION

We have presented a robust and straightforward method
for detecting the side lane delimiters and the position of the
guardrails and fences using stereovision. The algorithm is
based on the hypothesis that the side lane and the guardrails
share the vertical and the horizontal profile (shape) with the
current lane, which is already detected, and this allows the
“straightening” of the 3D point set, making it suited for a
histogram-based analysis. The simplicity, accuracy and
robustness of the approach derive from the advantages of
using a stereovision-based system for lane and road
detection.
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