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Abstract

In this paper we propose a novel boosting-based slid-

ing window solution for object detection which can keep

up with the precision of the state-of-the art deep learning

approaches, while being 10 to 100 times faster. The solu-

tion takes advantage of multisensorial perception and ex-

ploits information from color, motion and depth. We intro-

duce multimodal multiresolution filtering of signal intensity,

gradient magnitude and orientation channels, in order to

capture structure at multiple scales and orientations. To

achieve scale invariant classification features, we analyze

the effect of scale change on features for different filter types

and propose a correction scheme. To improve recognition

we incorporate 2D and 3D context by generating spatial,

geometric and symmetrical channels. Finally, we evaluate

the proposed solution on multiple benchmarks for the de-

tection of pedestrians, cars and bicyclists. We achieve com-

petitive results at over 25 frames per second.

1. Introduction

Due to the fast evolution of intelligent vehicles, there is

a pressing need for robust but also real-time environment

perception solutions in order to enable advanced driver as-

sistance or autonomous driving. One of the main perception

tasks is the detection of traffic participants, which is still

an active research problem. The performance of state-of-

the-art solutions is getting closer and closer to human level

recognition [46]; however, results are far from saturation

and there is still room for improvement.

The current benchmarks are dominated by deep learning

solutions that are able to automatically learn image features

at multiple abstraction levels from raw image data. Unfor-

tunately, these powerful approaches come with a high com-

putational cost. The fastest top-performing deep learning

solutions struggle to achieve a processing speed of 2-3 FPS

even with high-end GPUs.

Our main goal is to provide a fast solution that can keep

up with the current best performing deep learning solutions.

We also focus on efficient ways to exploit additional infor-

mation such as motion and depth. There are some existing

solutions that use motion [33], depth from stereo [26] or

LIDAR data [21] to improve detection results from mono.

However, current benchmarks are dominated by solutions

that use as input only individual monocular images and

seem to outperform the current multimodal solutions, or re-

port only minor improvements [47]. As noted in [3], the

efficient use of other modalities has not been explored yet.

In this work we consider as baseline the solution pro-

posed in [10], which relies on multiresolution filtered chan-

nel features. It is a sliding window type approach and ap-

plies a fast filtering scheme over LUV+HOG channels to

generate classification features. We focus on improving

classification features and exploring efficient ways to incor-

porate multimodal features. The main contributions of this

paper are:

• multimodal multiresolution channels;

• a feature correction scheme for achieving scale invari-

ant classification features;

• exploitation of 2D and 3D context information;

• a common framework for detecting pedestrians, cars

and bicyclists.

2. Related work

The progress of the pedestrian detection algorithms is

due to the existence of numerous and extensive benchmarks.

Pushing the boundaries for obtaining better results each

year on these datasets has lead to the fast evolution of detec-

tion methods. Some of the most relevant benchmarks are:

Inria[12], Caltech-USA [18], KITTI [22].

For a comprehensive review on the best performing de-

tection methods the reader is invited to consult recent re-

views and surveys. The review from [3] indicates that im-

provements due to newly proposed features will continue.
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Figure 1. System overview.

It also recommends and evaluates introducing optical flow,

context information and other complementary information

sources to improve detection accuracy. In [46] the authors

investigate how far the current approaches are from an ideal

single frame detector. In 2015 the best methods made ten

times more errors than human annotators, indicating that

there is room for improvement.

Features - Histogram of Oriented Gradients [12] was the

original feature proposed for the specific task of pedestrian

detection. The introduction of Haar-type features [41] with

integral image calculation [40] enabled real-time detection.

Generalization of Haar features which make use of different

image channels was the next step forward as shown in [17].

Since then the majority of approaches rely on such types of

features but innovative improvements have been proposed:

locally decorrelated filters [31]; different checkerboard fil-

tered feature patterns [47]; rotated filters [46].

Deep learning methods such as [24, 29] have reached

state-of-the-art performance. The underlying image fea-

tures are automatically learned by the convolutional layers

of the network.

Multiscale - There are several ways to address the issue

of detecting pedestrians at multiple scales. In the original

work by Dalal and Triggs [12] the classifier model had a

fixed dimension and the input image was resized multiple

times to detect pedestrians at smaller scales. This had a

clear computational burden of recomputing the features at

several scales. Another alternative is to consider separate

models for each scale such as the work from [2]. A hy-

brid approach by [16] proposed to recalculate features only

at each octave and to perform approximations in between

octaves for a faster feature extraction phase.

Multimodal - The review from [3] recommends employ-

ing information from complementary sources such as color,

optical flow, depth and context to improve detection perfor-

mance. Several works focused on exploiting these modali-

ties and proposed features based on motion [43] [13] [20];

infrared imagery [27]; depth from LIDAR [38] [28] [19]

[34] and depth from stereo [20] [45] [27].

The work in [23] introduces Multiview classifiers trained

on multimodal information fused from RGB and depth

maps. The dense depth maps are obtained via interpolation

from the sparse 3D laser pointcloud.

The authors in [8] describe an approach that leverages

both image and 3D information by utilizing CNNs applied

on the LIDAR bird’s eye view, LIDAR front view and the

RGB image.

Multimodal information can be also used for object pro-

posal generation. In [7] high quality 3D object proposals

are obtained relying on stereo reconstruction.

3. Proposed solution

We propose a novel multimodal multiresolution ap-

proach for object detection introducing multiple key con-

cepts for achieving robust detection at low computational

costs. The solution takes advantage of multisensorial per-

ception and exploits information from color, motion and

depth. We introduce multimodal multiresolution filtering of

signal intensity, gradient magnitude and orientation chan-

nels, in order to capture structure at multiple scales and

orientations. Objects are detected using multiscale sliding

windows with a boosting-based classifier. We propose a

correction scheme to ensure scale invariance of classifica-

tion features even after multiple iterations of low pass and

high pass filters. To improve the robustness we introduce

2D and 3D context by generating spatial, geometric and

symmetry channels. An overview of the solution is illus-

trated in Figure 1.
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Figure 2. Multimodal channels - from top to bottom: color image and its gradient magnitude; temporal difference; 3D point cloud depth;

stereo depth map; gradient magnitude for the channels above

3.1. Multimodal detection

Multimodal data can serve object detection as a source

for context and also for local structure. We create a dense

intensity image for each modality and use them to generate

intensity, gradient magnitude and orientation channels. In

Figure 2 we illustrate the gradient magnitudes for different

modalities and it can be seen that each modality highlights

different edge types. A boosting classifier can learn to se-

lect and combine relevant features from different modali-

ties. We consider three types of input for multimodal detec-

tion: color, motion and depth.

Color - We rely on the LUV color transform that proved

to be the most efficient for pedestrian detection approaches

in [17].

Motion - A simple way for capturing motion is to com-

pute the difference between two consecutive frames. Sig-

nificant improvements for motion based detection were

achieved by aligning the previous frame using coarse op-

tical flow [33]. This way the temporal difference is able to

capture relative motion and can be powerful especially for

articulated object types.

Depth - Depth can be recovered in real-time from stereo

image pairs using a fast stereo reconstruction solution such

as rSGM [37] or directly from the available 3D LIDAR

point cloud. In both cases, we use interpolation for regions

without 3D measurement in order to achieve a dense repre-

sentation. In the case of stereo images we have much denser

reconstruction, but the accuracy decreases with the distance

from camera. In the case of 3D point cloud the depth is in-

terpolated using inverse distance weighing from a very low

number of measurements ( 0.01 density) and the maximum

height is limited to around 2 meters. The precision of the

measurements is higher compared to stereo reconstruction

and it does not decrease with distance. It is also independent

of image quality and lighting conditions.

3.2. Multimodal multiresolution filtered channels

For each of the previously described intensity inputs we

compute a normalized gradient magnitude and magnitudes

at 6 orientations, resulting in a total of 10 channels for color

and 8 for motion and depth. To capture multimodal edges

at multiple scales and multiple orientations we apply a fast

multiresolution filtering scheme [10]. A 3 × 3 box filter is

used multiple times iteratively to generate smoothed images

at multiple scales. Vertical and horizontal difference is ap-

plied at each scale for additional high-pass filtering. Due

to the simplicity of the features, computation is possible in

less than 3 ms per VGA resolution image on a GPU. We opt

for the removal of the aggregation step from [10] in order to

increase the resolution of the filtered channels.

3.3. Achieving scale invariance for multiscale
detection

A fast solution for multiscale detection is to use a single

image scale, resulting in very fast feature computation, and

apply sliding windows at multiple scale. This was achieved

in [10] using a single flexible classification model that could

be used for the classification of sliding windows at multiple

scales. The classification features for a detection window

were sampled using a grid of 20× 10 samples from the fil-

tered channels and the grid was adapted to the window size.

The scale invariance of the classification features is lost due

to the use of a single image feature scale and single classi-

fier model for all pedestrian scales. Providing scale invari-

ance for the classification features should further increase

detection robustness.

We define the ratio function (or correction factor) for

a classification feature f as: the feature value extracted at

scale s divided by the feature value at the original scale. It

is important to note, that due to rescaling, the position of the

same classification feature changes with the scale, resulting

in:
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rf (s) = f(s, x, y)/f(1, x/s, y/s) (1)

Our goal is to extract classification features at any scale

using only the raw image features computed at the origi-

nal scale. For this we need a model for the function rf (s),
enabling us to write:

f(s, x, y) = rf (s) · f(1, x/s, y/s) (2)

We will determine the form of the ratio function for dif-

ferent feature types. As baseline feature types we have

color, gradient magnitude and gradient orientation bins.

The baseline features can be filtered using smoothing low

pass filters or first order difference filters (horizontal or ver-

tical), resulting in additional feature types. In the first part

we ignore discretization errors, resizing artifacts and con-

sider the image as a continuous signal to determine the form

of the ratio function theoretically. In the second part, we

collect data from the Caltech dataset and perform a linear

fit to find the form of the ratio function empirically.

Theoretical estimation - In the following we estimate

the theoretical ratio between the classification features from

s times larger/smaller bounding boxes and from the original

bounding boxes. Note, that the bounding boxes represent

the same object at different sizes. Color features should not

change with the scale due to scale invariance:

Is(x, y) = I(x/s, y/s) (3)

where Is denotes the image at scale s and I represents the

image at the original scale. This shows that rI(s) = 1 for

color features.

For the gradient magnitude we have rM (s) = s−1 since:

Ms(x, y) =
1

s
M(x/s, y/s) (4)

The factor is also transmitted to gradient orientation bin fea-

tures since these are proportional to the gradient magnitude.

In the case of smoothing operations the correction factor

is not changed. Applying the derivative over color shows

that rIdx(s) = s−1 since:

∂

∂x
Is(x, y) =

1

s

∂

∂x
I(x/s, y/s) (5)

The derivative over gradient magnitude results in

rMdx(s) = s−2.

Empirical estimation - In order to estimate the correc-

tion factors empirically, we extract features from the Cal-

tech dataset at multiple scales. We follow the protocol de-

scribed in [16] for approximating each feature type using

the ratio function:

f(s) = ae−λsf(0) = exp(log(a)− λs)f(0) (6)
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Figure 3. Scale correction factors for different feature types. The

factors represent the ratio between the feature value at scale s and

the feature value at the original scale. The figures show on the x-

axis the scale −log2(s) (0 - original scale; 1 - downsampling by

a factor of 2) and on the y-axis the ratio function r(−log2(s)) for

different feature types. Left: L-channel, gradient magnitude and

second gradient orientation bin channel. Right: the same chan-

nels with horizontal derivative filter. The different lines from the

graph plot the behavior of the original channel and the 5 iteratively

smoothed channels, i.e. sx signifies x number of smoothing filters.

where f(s) is the feature after a downsampling of 2s and

f(0) is the feature at the original scale. According to the

previous model, a linear fit for log(f(s)/f(0)) determines

a and λ. Note, that we approximate the ratio function for

pointwise features, whereas in [16] sums over rectangular

regions were considered. To obtain graphs compatible with

their work we would need to plot
f(s)

22sf(0) as a function of s

because the sum over the rectangular region introduces the

(2s)2 term.

Figure 3 shows the data points that indicate the mean

ratio and the linear fit for 6 representative feature types. We

plot the ratio function in terms of −log2(s) for values s ∈
[0.5, 1] (one octave). This was used for linear fit and r(s) is

obtainable via a variable change.

The graphs show that: for color channels, the features

retain their values after resize operations, just as the theo-

retical model predicted: rI(s) = 1; partial derivative oper-
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ations do not conform to the theoretical model: rIdx(s) =
s−0.585 (at a shrinking factor of 2 it is around 1.5 and not

2); smoothing operations decrease the exponent further; the

first smoothing operation for orientation features behaves

differently (see the change between orig to s1 and s1 to s2).

Having determined the correction factors both theoreti-

cally and empirically, we can apply them for scale correc-

tion. Due to the decrease in accuracy of the approximation

with the scale change, we recompute the image features for

each octave and use the approximation only for the interme-

diate scales as in [16].

3.4. Context channels

Pedestrians and vehicles are bounded by spatial and ge-

ometric constraints. In the following we define such con-

straints and incorporate them as context channels next to the

multiresolution filtered channels. This way we can enable

the boosting classifiers to learn the context of pedestrians or

other object types.

3.4.1 2D context

Traffic scenario images captured from vehicle mounted

cameras tend to have a stable spatial layout. The position

and layout of pedestrians in the 2D images is constrained

by camera parameters and bounded by 3D size and 3D

position. Objects can appear in any place, but we focus

only on those which stand on the ground plane. Some ap-

proaches learned the spatial distribution of different object

types in 2D images and incorporated them as spatial pri-

ors for semantic segmentation [14, 36]. Instead of using a

constant prior we use spatial channels (used originally for

segmentation [9]) that enable the boosting classifier to learn

constraints on vertical and horizontal position as classifi-

cation features. The filtered channels are extended with 3

additional channels consisting of a vertical, horizontal and

symmetric-horizontal channel. These channels have val-

ues from 0 to 1 and represent the normalized vertical and

horizontal position in each location of the 2D image (see

Figure 4). The employed boosting classifier can learn 2D

constraints on the top, center and bottom part of the sliding

window by simply learning thresholds over channel features

from these 2D spatial channels.

We also introduce symmetry channels that capture ver-

tical edge symmetries at multiple ranges. For example,

shorter ranges capture the legs or the head, while the longer

ranges capture the whole torso. We define an individual

channel for each range in the form of a symmetry cost:

Sr(x, y) =
r

∑

i=r/2

(

Dx(x− i, y)−Dx(x+ i, y)

Dx(x− i, y) +Dx(x+ i, y)

)2

(7)

Figure 4. 2D context channels - from top left: input; horizontal;

vertical; S6 symmetry; S12 symmetry; S6 + S12 symmetry chan-

nels.

where Dx is the partial derivative along the x-axis and r is

the symmetry range. In our experiments we used the pixel

ranges r ∈ {6, 12, 18, 24}. We also generate a channel that

is a sum of all these symmetry channels to obtain a range

independent channel (Figure 4) at octave level. The compu-

tation of these channels takes less than 1 ms on a GPU.

3.4.2 3D context

Using 3D information from stereo or LIDAR it is possible

to learn the 3D context of the traffic participants. We seg-

ment the image into 16000 superpixels having an average

size of around 100 pixels and permiting the capturing of

body parts for far pedestrians. We implement an approxi-

mation of SLIC [1] segmentation on GPU, achieving a run-

time of less than 2 ms for a 0.5 MP image. We compute

the 3D position of each superpixel using hybrid median fil-

tering and generate normalized 3D spatial context channels

for the X, Y, and Z coordinates. For example the Y chan-

nel represent the height above ground at each pixel loca-

tion. For better robustness, we estimate the road plane using

a fast RANSAC based approach and correct the 3D points

via a rotation that aligns the plane normal to the the y axis.

We additionally generate a binary channel for the ground by

marking all image points that are at a height of at most 20

cm above the ground.

For the geometric context channels we propose the use of

a simple but very fast 3D clustering method. For grouping

we use superpixel-level region growing and as grouping cri-

teria we use an absolute threshold of 0.5 meters in the case

of depth from LIDAR and a relative threshold of 2.5% from

distance to camera in the case of depth from stereo. We ig-

nore superpixels that belong to the ground. Finally, we de-

termine the height, width and area of each group and save

as normalized values for each pixel of each group, result-

ing in the geometric context channels. These channels en-

able classifiers to learn geometric constraints for objects by

learning numerical thresholds over channel values. These

channels are illustrated in Figure 5.
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Figure 5. 3D context channels - from top left: color; projected 3D point cloud; X; Y; Z; ground plane; object height and width

4. Detecting multiple object types

In the case of pedestrians we opt for a single detector

with a fixed aspect ratio. In order to handle object types

with highly variable aspect ratios, we use different windows

for different aspect ratio ranges. A simple solution would be

to divide the positive sample set into equal parts and use a

detection window with a fixed aspect ratio that maximizes

the intersection over union overlapping criteria for the sub-

set. In the case of cars, a minimum overlap of 85% (70%

required at evaluation) can be achieved for all aspect ratios

using only 5 fixed aspect ratios. Dividing the dataset based

on appearance and orientation [25, 32] can provide better

results, however it would increase computational costs at

detection time for classification and a minimal number of

detectors is preferable.

Training protocol - For sliding window classification

we train Adaboost classifiers using 5-level decision trees as

weak learners. We train an initial classifier using NrP (num-

ber of positive samples) and NrP random negative samples.

Then we use multiple bootstrapping rounds in order to gen-

erate NrP additional hard negatives iteratively, until the hard

negative count gets below NrP. For the first 4 classifiers we

use 256, 512, 1024 and 2048 weak learners respectively,

and for the rest of the rounds 4096. For better generaliza-

tion, the learning rate of the boosting algorithm is adapted

by a shrink factor as recommanded in [25]. To accelerate

training and further reduce overfitting, we consider a ran-

dom subset of only 1% of the classification features for each

feature selection. To accelerate prediction, we use soft cas-

cading with a variable rejection threshold decreasing from

1 with a step of 0.01 after each weak learner [15] at train-

ing time and 0.02 at testing time. This is in contrast to tra-

ditional approaches which fix the rejection threshold at -1

during training. We apply it in order to generate more hard

negative samples.

5. Experimental Results

In order to assess the performance of the proposed solu-

tion and to compare it with the current state of art, we eval-

uated it on multiple detection benchmarks in the context of

traffic environments. We consider the Caltech-USA dataset

[18] for pedestrian detection, KITTI-object [22] for pedes-

trians and cars and Tsinghua-Daimler dataset [30] for cy-

clists. In the following we abbreviate the current approach

as MM-MRFC standing for multimodal multiresolution fil-

tered channels.

5.1. Caltech ­ Pedestrian

We provide the results on the Caltech dataset both us-

ing the standard training set and with the 10 times larger

extended training set. We use the standard dataset for an-

alyzing the improvements provided by each component of

the solution and use the extended set for comparison with

other solutions. In both cases we evaluate the log-average

miss rate (MR) in the [10−2, 100] false positives per image

(FPPI) range for the reasonable test setup.

In Table 1 we show the incremental improvements of the

proposed solution. Both the theoretically and the empiri-

cally approximated scale correction schemes provide a sig-

nificant performance gain. In all further experiments we use

the theoretical scale correction factors due to their simplic-

ity and their similar performance compared to the empirical

scale correction factors. After adding scale correction and

2D context channels, a MR of 18.26% is achieved which

is currently the lowest miss rate reported for training with

the standard training set and using only color information.

Further improvements are obtained with SDt [33] motion

channel features and by applying multiresolution filtering

over SDt motion channels.

In Figure 6 we provide a comparison with the sate of

art on the Caltech benchmark using the reasonable setup.

The proposed solution achieves a MR of 12.31% provid-
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22% SpatialPooling+

22% SCCPriors

21% TA−CNN
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Figure 6. Comparison to the state-of-the-art on Caltech-USA

pedestrian benchmark (reasonable test setup).

Figure 7. Caltech test set results. Average miss rate (MR) plot-

ted against execution time (FPS) for multiple approaches. FPS is

capped at 50 for better visualization (FastCF [11] is at 105 FPS

and Multiresolution [10] at 60 FPS).

ing an improvement of 5% over the previous best perform-

ing boosting based solution (Checkerboards+ [47]). It also

compares well with the best performing deep learning based

solutions (all approaches with MR below 17%). It is impor-

tant to highlight that our detector is capable of running at 30

FPS on a GPU, having an average execution time of 32 ms

for a single image on system with an Intel i7 3.0 GHz CPU

and an Nvidia GeForce GTX 980 Ti GPU. In Figure 7 we

provide a comparison based on MR and frame rate (FPS)

with all solutions that reported their execution time.

5.2. KITTI ­ Object

In order to evaluate the detection of pedestrians and cars

on the KITTI benchmark [22] we follow the standard eval-

uation protocols. Object detection performance is mea-

sured by computing the average precision (AP) for the recall

Channel Type Caltech MR

- reasonable -

Color MRFC no SC 24.46

MRFC E-SC 22.69

MRFC T-SC 22.84

+ 2D spatial 20.80

+ 2D symmetry 18.26

Motion + SDt 17.29

+ MM-MRFC 16.11
Table 1. Results on Caltech test set using different scale correction

schemes and multimodal feature channel types. Scale correction:

no SC - without scale correction; E-SC - with empirical correction

factors; T-SC with theoretical correction factors.

Context Type KITTI AP

Easy Moderate Hard

Color MRFC no SC 62.84 59.98 51.10

MRFC 67.14 61.45 52.76

+ 2D spatial 69.58 63.83 54.83

+ 2D symmetry 70.28 64.75 55.66

3D stereo + 3D spatial 77.88 70.30 60.63

+ 3D geometric 77.97 70.61 61.47

+ MRFC 82.53 74.82 65.95

3D LIDAR + 3D spatial 77.88 70.93 61.91

+ 3D geometric 79.92 72.48 63.13

+ MRFC 84.26 76.34 67.18

Motion +MRFC 85.25 77.72 68.28
Table 2. Results on KITTI validation set using different feature

channel types. Performance is measured in AP (%) for easy, mod-

erate and hard test setups. Feature scale correction is employed in

all feature setups, except MRFC no SC. The best result is achieved

using color, depth from LIDAR, and motion.

range of [0, 1]. For the validation of the proposed features

we evaluate the performance on the validation set using the

validation/training split from [7]. In Table 2 we show the

incremental improvements of the proposed features. Each

proposal increases the AP values demonstrating the useful-

ness of the new feature channels.

The results for the test set compared to other approaches

can be found in Table 3. We present the results for pedes-

trians and cars. Because the number of training samples for

the bicyclist class is small, we evaluate this object class on

another dataset (see next subsection). It can be seen that a

competitive performance is achieved for both object classes

at significantly lower computational costs. Pedestrian de-

tection runs at 25 FPS and car detection at 20 FPS. The pro-

posed solution achieves the highest AP among multimodal

or boosting-based solutions and is comparable with the best

performing deep learning based solutions.
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Method Input Time Cars Pedestrians

Easy Moderate Hard Easy Moderate Hard

FusionDPM [34] C DL 30s CPU - - - 59.51 46.67 42.05

ACF [15] C 1s CPU - - - 60.11 47.29 42.90

VOTE-3Deep [19] C DL 1.5s CPU 76.79 68.24 63.23 68.39 55.37 52.59

MV-RGBD-RF [23] C DL 4s GPU - - - 73.30 56.59 49.63

FilteredICF [47] C 2s CPU - - - 67.65 56.75 51.12

DeepParts [39] C 1s GPU - - - 70.49 58.67 52.78

CompACT-Deep [5] C 1s GPU - - - 70.69 58.74 52.71

Regionlets [42] C 1s CPU 84.75 76.45 59.70 73.14 61.15 55.21

Faster-RCNN [35] C 2s GPU 86.71 81.84 71.12 78.86 65.90 61.18

Mono 3D [6] C 4.2s GPU 92.33 88.66 78.96 80.35 66.68 63.44

3DOP [7] C DS 3s GPU 93.04 88.64 79.10 81.78 67.47 64.70

SDP+RPN [44] C 0.4s GPU 90.14 88.85 78.38 80.09 70.16 64.82

MS-CNN [4] C 0.4s GPU 90.03 89.02 76.11 83.92 73.70 68.31

MM-MRFC C DL F 0.05s GPU 90.63 88.45 78.32 82.18 70.02 64.74
Table 3. Comparison with the state-of-the-art on the KITTI object benchmark (test set). For each approach we report the input modalities

(C - color; DS - depth from stereo; DL - depth from LIDAR, F - flow), execution time (CPU or GPU) and average precision (%) for cars

and pedestrians under easy, moderate and hard test setups.

5.3. Tsinghua­Daimler ­ Cyclist

The Tsinghua-Daimler benchmark [30] is an ideal

benchmark for evaluating the detection of bicyclists, con-

sidering that it contains 22161 annotated cyclist instances

in over 30000 images. These were recorded in the urban

traffic of Beijing. The dataset also provides 3D stereo data

for each image frame. The evaluation protocol is the same

as for the KITTI detection benchmark.

Currently, only cyclists with a height of at least 60 pixels

are annotated in the training dataset, even though the test

set is fully labeled with cyclists having heights grater than

20 pixels. For this reason, we choose to evaluate the perfor-

mance of our solution only for cyclists having a height of

at least 60 pixels in a 2048 × 1024 pixel image (Easy test

setup).

Multiple approaches were evaluated in [30] such as: tra-

ditional boosting-based solutions (ACF, LDCF); deep learn-

ing approaches with different object proposals (Selective

Search, Edge Boxes, Stereo Proposal) and architectures

(VGG, ZF); deformable part models (DPM). We train three

detectors for narrow, intermediate and wide bicyclists sim-

ilarly to other sliding window approaches from [30]. Table

4 provides a comparison in terms of AP for the Easy Ig-

nore and Easy Discard test setups. In the first case, the

false detections for other similar classes, such as pedestri-

ans or other riders, are ignored. The previous best perfor-

mance was achieved by DPM-bboxpred [30] relying on de-

formable part models and object proposal from stereo. Our

proposed solution achieves a slight improvement in AP for

the Ignore case and a significant improvement of 5% for the

Discard case, achieving highest reported APs on the bench-

mark at 25 FPS.

Method Easy Ignore Easy Discard

SS-FRCN-VGG 76.7 63.8

EB-FRCN-VGG 83.8 72.6

SP-FRCN-VGG 87.2 78.6

DPM 89.4 81.6

LDCF 89.8 76.2

ACF 89.8 77.8

DPM-bboxpred 90.5 82.3

MM-MRFC 90.7 87.1
Table 4. Comparison with the state-of-the-art based on average

precision (%) on the Tsinghua-Daimler cyclist benchmark.

6. Conclusions

In this paper we have introduced an object detection sys-

tem that relies on several innovative proposals. First, it

makes use of information coming from multiple comple-

mentary modalities: color, depth and motion. Second, it

relies on multiresolution filtered channels for constructing

discriminative features for detection. Third, it employs a

scale correction scheme based on both theoretical and em-

pirical considerations. Fourth, it proposes several contex-

tual feature channels such as: 2D context, symmetry chan-

nels, 3D context, 3D geometrical channels.

Experimental results on multiple benchmarks show that

the method achieves top performance while being ten to a

hundred times faster than its competitors. It also shows, that

although deep learning approaches may dominate the field,

traditional sliding window approaches can offer a low cost

alternative to these while being competitive.
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