



# Deep learning for semantic segmentation

Andra Petrovai

**Research Center for Image Processing and Pattern Recognition** 

**Technical University of Cluj-Napoca** 

2017 IEEE International Conference on Intelligent Computer Communication and Processing September 7-9, Cluj-Napoca, Romania



### Contents



- **&** Introduction
- & Benchmarks
- & FCN
- & ERF-Net
- **&** Transfer learning

# Semantic segmentation



- & Label each pixel in the image with a semantic class
- **a** Don't differentiate between instances
- **&** Provides a detailed understanding of the environment
- $_{\&}$  Can be used in the context of autonomous driving









- Various indoor and outdoor scenes and images of objects, persons and animals:
- ℵ Pascal VOC 21 classes, 10k images [1]
- ℵ Pascal Context 59 classes, 10k images [2]
- Microsoft COCO 182 classes, 10k images
  [3]
- & **ADE20K** 150 classes, 20k images [4]



### Benchmarks



- α Contain only **traffic scenes**:
- **CamVid** 32 classes, 700 images [5]
- Cityscapes 30 classes, 19 classes used in evaluation, 5000 images [6]
- Synthia 13 classes, 13.400 images, synthetic dataset [7]



- Fully Convolutional Network [8]: a special type of 8 convolutional network that outputs a segmented image
- Convolution network: downsampling 8
- Deconvolution network: upsampling 8















### & 3 x 3 transposed convolution, stride 2 pad 1





Input gives weight for filter: multiply each element of the input with the filter







⊗ 3 x 3 transposed convolution, stride 2 pad 1







# FCN performance on the Cityscapes dataset

|   | name             | fine | coarse | 16-<br>bit | depth | video | sub | loU<br>class | iloU<br>class ♀ | loU<br>category | iloU<br>category | Runtime<br>[s] |     |
|---|------------------|------|--------|------------|-------|-------|-----|--------------|-----------------|-----------------|------------------|----------------|-----|
| ٢ | m-TCFs           | yes  | yes    | no         | по    | no    | no  | 71.8         | 43.6            | 87.6            | 70.6             | 1.0            | по  |
| ٢ | LRR-4x           | yes  | yes    | no         | no    | no    | no  | 71.8         | 47.9            | 88.4            | 73.9             | n/a            | yes |
| ٢ | FRRN             | yes  | no     | no         | no    | no    | 2   | 71.8         | 45.5            | 88.9            | 75.1             | n/a            | yes |
| ٢ | Adelaide_context | yes  | no     | no         | по    | no    | no  | 71.6         | 51.7            | 87.3            | 74.1             | n/a            | по  |
| 0 | ML-CRNN          | yes  | no     | no         | no    | no    | no  | 71.2         | 47.1            | 87.7            | 72.5             | n/a            | no  |

| Position 22/5 |
|---------------|
|---------------|

| C FCN 8s | yes | no | no | no | no | no | 65.3 | 41.7 | 85.7 | 70.1 | 0.5 | yes |
|----------|-----|----|----|----|----|----|------|------|------|------|-----|-----|
|          |     |    |    |    |    |    |      |      |      |      |     |     |

. . .

ERF-Net [9]



- One of the fastest convolutional neural networks in the literature used for semantic segmentation
- Execution time is 25 ms for a 1024 x 512 image running on a Titan X GPU











| Layer | Туре                              | out-F | out-Res  |         |
|-------|-----------------------------------|-------|----------|---------|
| 1     | Downsampler block                 | 16    | 512x256  |         |
| 2     | Downsampler block                 | 64    | 256x128  |         |
| 3-7   | 5 x Non-bt-1D                     | 64    | 256x128  |         |
| 8     | Downsampler block                 | 128   | 128x64   |         |
| 9     | Non-bt-1D (dilated 2)             | 128   | 128x64   |         |
| 10    | Non-bt-1D (dilated 4)             | 128   | 128x64   | ENCODER |
| 11    | Non-bt-1D (dilated 8)             | 128   | 128x64   |         |
| 12    | Non-bt-1D (dilated 16)            | 128   | 128x64   |         |
| 13    | Non-bt-1D (dilated 2)             | 128   | 128x64   |         |
| 14    | Non-bt-1D (dilated 4)             | 128   | 128x64   |         |
| 15    | Non-bt-1D (dilated 8)             | 128   | 128x64   |         |
| 16    | Non-bt-1D (dilated 16)            | 128   | 128x64   |         |
| 17    | <b>Deconvolution</b> (upsampling) | 64    | 256x128  |         |
| 18-19 | 2 x Non-bt-1D                     | 64    | 256x128  |         |
| 20    | <b>Deconvolution</b> (upsampling) | 16    | 512x256  |         |
| 21-22 | 2 x Non-bt-1D                     | 16    | 512x256  |         |
| 23    | <b>Deconvolution</b> (upsampling) | С     | 1024x512 |         |

# **ERF-Net:** Architecture











```
(1): nn.Sequential {
  [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
  (1): nn.ConcatTable {
    input
       `-> (1): nn.Sequential {
              [input \rightarrow (1) \rightarrow output]
              (1): cudnn.SpatialConvolution (3 -> 13, 3x3, 2,2, 1,1)
            }
        `-> (2): nn.Sequential {
              [input \rightarrow (1) \rightarrow output]
              (1): cudnn.SpatialMaxPooling(2x2, 2,2)
       ... -> output
  (2): nn.JoinTable
  (3): cudnn.SpatialBatchNormalization
  (4): nn.SpatialDropout(0,00000)
  (5): cudnn.ReLU
```





|   | name             | fine | coarse | 16-<br>bit | depth | video | sub | loU<br>class | iloU<br>class | loU<br>category | iloU<br>category | Runtime<br>[s] | code |
|---|------------------|------|--------|------------|-------|-------|-----|--------------|---------------|-----------------|------------------|----------------|------|
| ٩ | m-TCFs           | yes  | yes    | no         | no    | no    | no  | 71.8         | 43.6          | 87.6            | 70.6             | 1.0            | no   |
| ٢ | LRR-4x           | yes  | yes    | no         | no    | no    | no  | 71.8         | 47.9          | 88.4            | 73.9             | n/a            | yes  |
| ٢ | FRRN             | yes  | no     | no         | no    | no    | 2   | 71.8         | 45.5          | 88.9            | 75.1             | n/a            | yes  |
| ٩ | Adelaide_context | yes  | no     | no         | no    | no    | no  | 71.6         | 51.7          | 87.3            | 74.1             | n/a            | no   |
| ٩ | ML-CRNN          | yes  | no     | no         | по    | no    | no  | 71.2         | 47.1          | 87.7            | 72.5             | n/a            | no   |

#### Position 10/55 and 12/55

| 0 | ERFNet (pretrained)   | yes | no | no | no | no | 2  | 69.7 | 44.1 | 87.3 | 72.7 | 0.02 | yes |
|---|-----------------------|-----|----|----|----|----|----|------|------|------|------|------|-----|
| ٢ | GridNet               | yes | no | no | no | no | no | 69.5 | 44.1 | 87.9 | 71.1 | n/a  | no  |
| 0 | ERFNet (from scratch) | yes | по | no | no | no | 2  | 68.0 | 40.4 | 86.5 | 70.4 | 0.02 | yes |

. . .





- Large annotated datasets are not always available for a given application
- Use transfer learning => train the network on a large existing dataset and use the weights to fine-tune the network for the specific task
- We perform different experiments in order to get the best results on our dataset (Up-drive)
- We fine-tune the ERF-Net network trained on the Cityscape dataset to fit our dataset



## **Transfer learning**



- & Our dataset contains 294 annotated images (front view, back view)
- $_{\&}$  234 images in the training set
- $_{\&}$  60 images in the validation set
- a 20 semantic classes



Front view

**Back view** 





### **a** Experiment 1

- □ Train encoder on the Cityscapes + Up-drive images
- Train decoder on the Cityscapes + Up-drive images
- Use data augmentation: image flipping and random translations => 234 \* 2 = 468 Up-drive images (2975 Cityscapes + 468 Up-drive = 3443 images)
- 8 classes: road, sidewalk, building, pole, vegetation, sky, person, vehicle
- Training time: 60h for 300 epochs on 2 Nvidia GTX 1070
- 84.71 IoU on Cityscapes validation set
- 84.72 IoU on Up-drive validation set





IoU Up-drive

### IoU Cityscapes

| CityScapes+ Up-driveAug                                        | 84.72 | 84.71 |
|----------------------------------------------------------------|-------|-------|
| Pretrained enc ImageNet +<br>Cityscapes+Up-driveAug<br>decoder | 86.7  | 85.87 |
| Pretrained enc ImageNet +<br>Up-driveAug decoder               | 91.14 | 55.53 |
| Pretrained enc Cityscapes +<br>Up-driveAug decoder             | 79.26 | 55.98 |
| Up-driveAug                                                    | 71.65 |       |







- semantic segmentation can be done in real time
- best results on our dataset are obtained using a pretrained decoder on ImageNet and training the decoder on Cityscapes + Up-Drive images
- Future work: add more training and validation examples in our dataset and get a better classifier



## Bibliography



- [1] Everingham, Mark, et al. "The pascal visual object classes challenge: A retrospective." International journal of computer vision 111.1 (2015): 98-136.
- [2] "The Role of Context for Object Detection and Semantic Segmentation in the Wild", Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, Alan Yuille IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014
- [3] "Microsoft coco: Common objects in context.", Lin, Tsung-Yi, et al. European conference on computer vision. Springer, Cham, 2014.
- [4] "Semantic understanding of scenes through the ADE20K dataset." Zhou, Bolei, et al.arXiv preprint arXiv:1608.05442 (2016).
- [5] Assisted Video Object Labeling By Joint Tracking of Regions and Keypoints, Julien Fauqueur, Gabriel Brostow, Roberto Cipolla, IEEE International Conference on Computer Vision (ICCV'2007) Interactive Computer Vision Workshop. Rio de Janeiro, Brazil, October 2007
- [6] The Cityscapes Dataset for Semantic Urban Scene Understanding,", M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
- [7] "The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes," G. Ros,
   L. Sellart, J. Materzynska, D. Vazquez and A. M. Lopez, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 3234-3243.
- [8]Fully convolutional networks for semantic segmentation.", Long, Jonathan, Evan Shelhamer, and Trevor Darrell. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
- [9] "Efficient ConvNet for Real-time Semantic Segmentation", E. Romera, J. M. Alvarez, L. M. Bergasa and R. Arroyo, IEE<sup>25</sup> Intelligent Vehicles Symposium (IV), pp. 1789-1794, Redondo Beach (California, USA), June 2017





### Acknowledgment:

# This work was supported by the EU H2020 project, UP-Drive under grant nr. 688652

# Thank you!