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Semantic segmentation

 Label each pixel in the image with a semantic class

 Don't differentiate between instances

 Provides a detailed understanding of the environment

 Can be used in the context of autonomous driving



Benchmarks 

 Various indoor and outdoor scenes and 
images of objects, persons and animals: 

 Pascal VOC – 21 classes, 10k images [1] 

 Pascal Context – 59 classes, 10k images [2]

 Microsoft COCO – 182 classes, 10k images 
[3]

 ADE20K – 150 classes, 20k images [4] 



Benchmarks 

 Contain only traffic scenes:

 CamVid – 32 classes, 700 images [5]

 Cityscapes – 30 classes, 19 classes used in 
evaluation, 5000 images [6]

 Synthia – 13 classes, 13.400 images, 
synthetic dataset [7] 



Fully Convolutional Network

 Fully Convolutional Network [8]: a special type of 
convolutional network that outputs a segmented 
image

 Convolution network: downsampling

 Deconvolution network: upsampling

Figure taken from FCN paper [8]



FCN: Max Unpooling

5 6

7 8

Input: 4 x 4

Output: 2 x 2

Max pooling with 2x2 filters and stride 2 

Rest of the network

1 2

3 4

Max unpooling (use positions from the pooling 
layer)

Input: 2 x 2

Output: 4 x 4
 Use corresponding pairs of pool/unpooling 

layers



FCN: Transposed Convolution

 3 x 3 transposed convolution, stride 2 pad 1
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FCN: Transposed Convolution

 3 x 3 transposed convolution, stride 2 pad 1
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Transposed convolution
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Input gives weight for filter: multiply each element 
of the input with the filter



FCN: Transposed Convolution

 3 x 3 transposed convolution, stride 2 pad 1
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FCN: Transposed Convolution

 3 x 3 transposed convolution, stride 2 pad 1
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FCN: Transposed Convolution

 3 x 3 transposed convolution, stride 2 pad 1
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FCN performance on the Cityscapes dataset
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ERF-Net [9]

 One of the fastest convolutional neural 
networks in the literature used for semantic 
segmentation

 Execution time is 25 ms for a 1024 x 512
image running on a Titan X GPU



ERF-Net: Architecture

Figure taken from paper [9]



ERF-Net: Architecture

ENCODER

DECODER

Figure taken from paper [9]



ERF-Net: Architecture

(11): nn.Sequential {

[input -> (1) -> (2) -> (3) -> output]

(1): nn.ConcatTable {

input

|`-> (1): nn.Sequential {

|      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> 

(9) -> (10) -> output]

|      (1): cudnn.SpatialConvolution(128 -> 128, 3x1, 1,1, 1,0)

|      (2): cudnn.ReLU

|      (3): cudnn.SpatialConvolution(128 -> 128, 1x3, 1,1, 0,1)

|      (4): cudnn.SpatialBatchNormalization

|      (5): cudnn.ReLU

|      (6): nn.SpatialDilatedConvolution(128 -> 128, 3x1, 1,1, 8,0, 8,1)

|      (7): cudnn.ReLU

|      (8): nn.SpatialDilatedConvolution(128 -> 128, 1x3, 1,1, 0,8, 1,8)

|      (9): cudnn.SpatialBatchNormalization

|      (10): nn.SpatialDropout(0,3)

|    }

`-> (2): nn.Sequential {

[input -> (1) -> output]

(1): nn.Identity

}

... -> output

}

(2): nn.CAddTable

(3): cudnn.ReLU

Figure taken from paper [9]



ERF-Net: Architecture

(1): nn.Sequential {

[input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]

(1): nn.ConcatTable {

input

|`-> (1): nn.Sequential {

|      [input -> (1) -> output]

|      (1): cudnn.SpatialConvolution(3 -> 13, 3x3, 2,2, 1,1)

|    }

`-> (2): nn.Sequential {

[input -> (1) -> output]

(1): cudnn.SpatialMaxPooling(2x2, 2,2)

}

... -> output

}

(2): nn.JoinTable

(3): cudnn.SpatialBatchNormalization

(4): nn.SpatialDropout(0,000000)

(5): cudnn.ReLU

Figure taken from paper [9]



ERF-Net performance on the Cityscapes dataset
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Transfer learning

 Large annotated datasets are not always 
available for a given application

 Use transfer learning => train the network on a 
large existing dataset and use the weights to fine-
tune the network for the specific task 

 We perform different experiments in order to get 
the best results on our dataset (Up-drive)

 We fine-tune the ERF-Net network trained on the 
Cityscape dataset to fit our dataset



Transfer learning

 Our dataset contains 294 annotated images (front view, back view)

 234 images in the training set

 60 images in the validation set

 20 semantic classes

Front view

Back view



Experimental results

 Experiment 1

 Train encoder on the Cityscapes + Up-drive images

 Train decoder on the Cityscapes + Up-drive images

 Use data augmentation: image flipping and random translations => 
234 * 2 = 468 Up-drive images (2975 Cityscapes + 468 Up-drive = 
3443 images)

 8 classes: road, sidewalk, building, pole, vegetation, sky, person, 
vehicle

 Training time: 60h for 300 epochs on 2 Nvidia GTX 1070 

 84.71 IoU on Cityscapes validation set

 84.72 IoU on Up-drive validation set
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Experimental results

IoU Up-drive IoU Cityscapes

CityScapes+ Up-driveAug 84.72 84.71

Pretrained enc ImageNet + 
Cityscapes+Up-driveAug 
decoder

86.7 85.87

Pretrained enc ImageNet + 
Up-driveAug decoder

91.14 55.53

Pretrained enc Cityscapes + 
Up-driveAug decoder

79.26 55.98

Up-driveAug 71.65
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Conclusions

• semantic segmentation can be done in real time

• best results on our dataset are obtained using a pretrained 
decoder on ImageNet and training the decoder on 
Cityscapes + Up-Drive images

• Future work: add more training and validation examples in 
our dataset and get a better classifier
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