

Boosting over Deep Convolutional Channel Features for Scene Perception

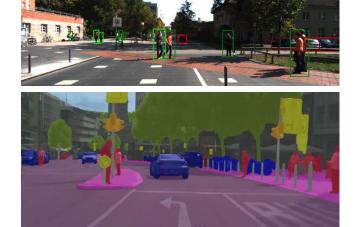
Arthur Costea

Research Center for Image Processing and Pattern Recognition

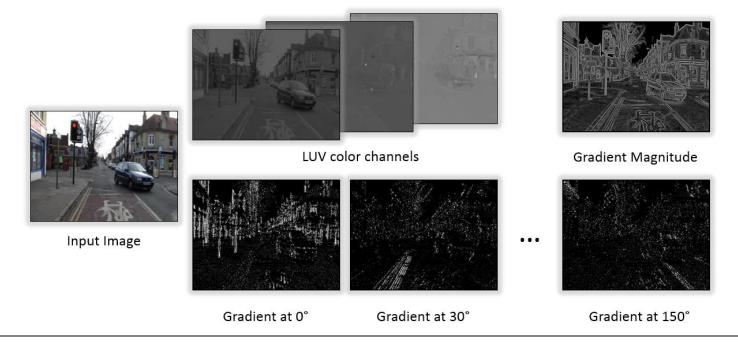
Technical University of Cluj-Napoca

2017 IEEE International Conference on Intelligent Computer Communication and Processing September 7-9, Cluj-Napoca, Romania

- Perception tasks:
 - Object detection
 - Semantic segmentation
- Proposed solution:
 - Channel-like image features
 - Multiresolution Filtered Channels
 - Multimodal Channels
 - Deep Convolutional Channels
 - Boosting over channel features
 - Easy fusion of different features types
 - Low computational costs

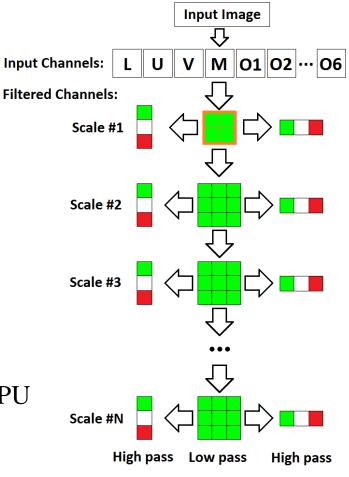


- 10 LUV + HOG image channels [Dollar et al. 2009]:
 - 3 LUV channels
 - 1 gradient magnitude
 - 6 oriented gradient magnitudes



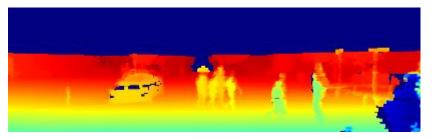
Multiresolution Filtered Channels

- Multiresolution filtering scheme:
 - Low pass and high pass filters
 - Applied iteratively at **multiple scales**
 - -7 scales => (5 x 3) x 10 = 150 channels
- Efficient implementation:
 - < 3 ms for a 640 x 480 pixel image on GPU

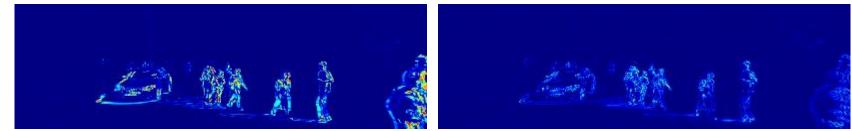


Color

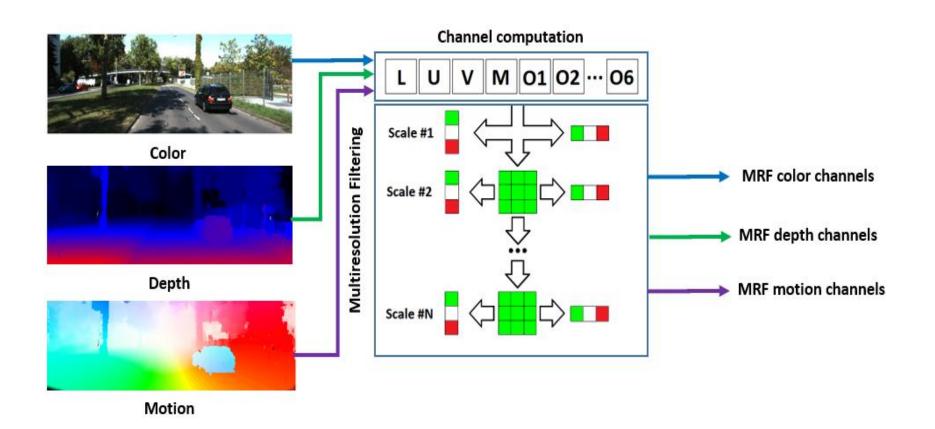
Depth



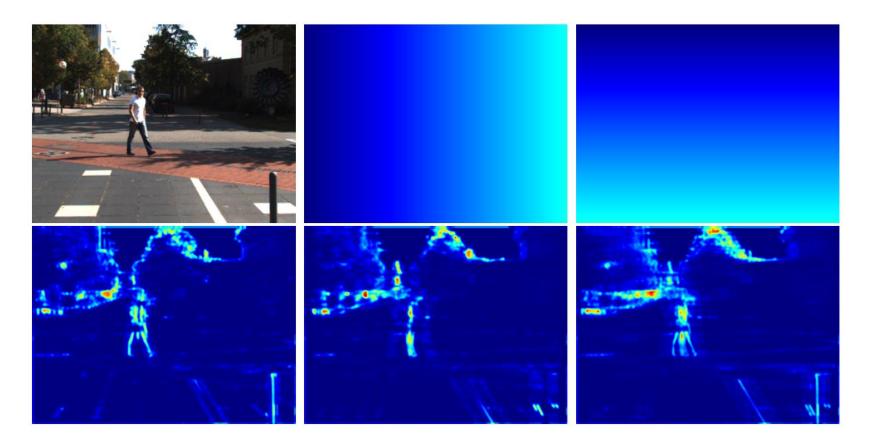
Motion



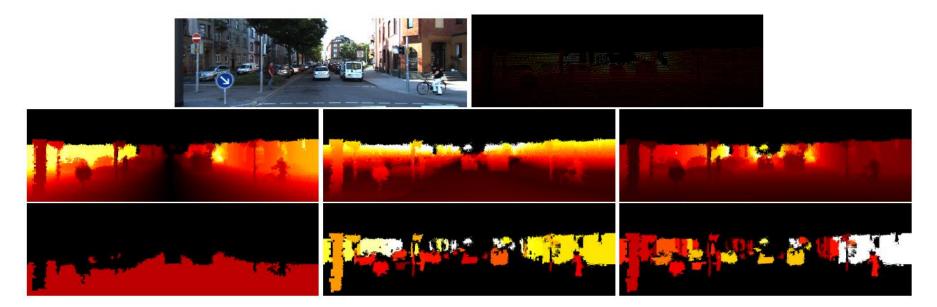
Multimodal Multiresolution Channels



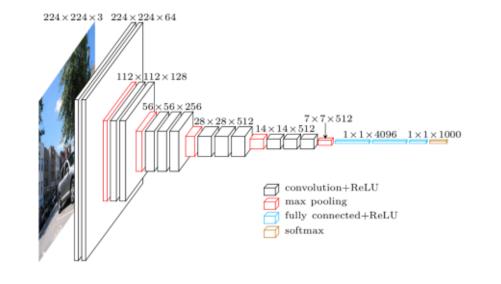
2D spatial and symmetry channels:

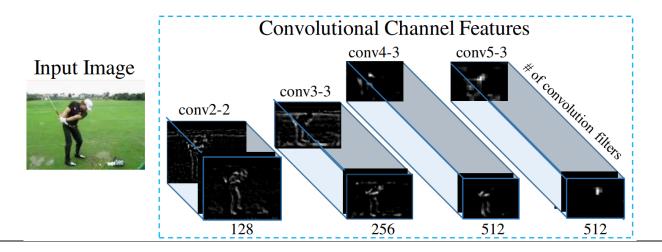


- 3D Context channels:
 - Spatial channels: X, Y, Z
 - Ground Plane
 - Geometric channels: height, width, size

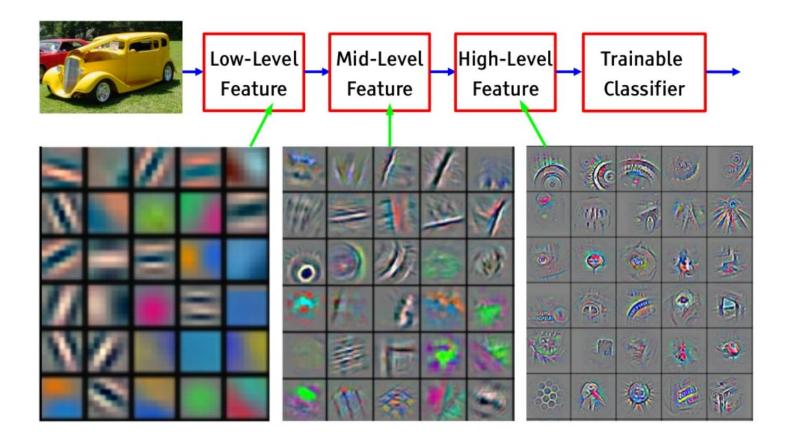


Deep Convolutional Channels





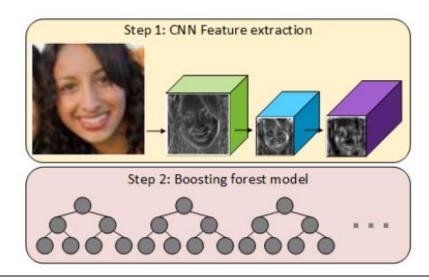
Convolutional net feature visualization [Zeiler & Fergus 2013]



Deep Convolutional Channels

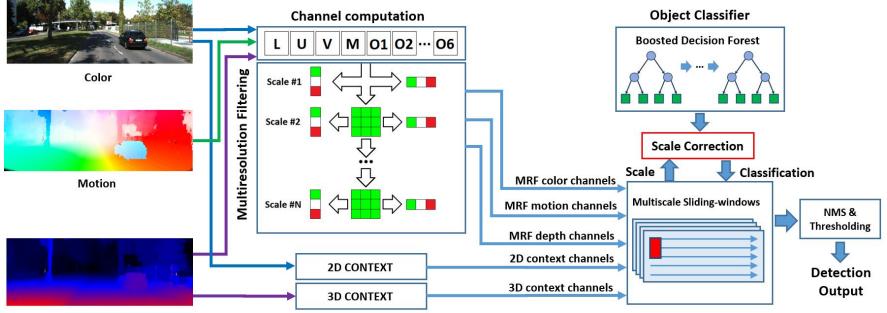
Convolutional channel features [Yang et al. 2015]:

- best results for pedestrian detection using the standard VGG16 pre-trained model
- VGG16 was trained for 2 weeks on ImageNet (over 1 million images, 1000 classes)



	Output	#Output	Filter	#Ds	Miss
	layer	maps	size		Rate(%)
ACF	-	10	3	4	41.22
LDCF	-	40	7	4	38.66
ANet-s1	conv1	96	11	4	61.65
	conv2	256	5	4	51.52
	conv3	384	3	4	43.73
	conv4	384	3	4	48.37
	conv5	256	3	4	53.37
	conv2-2	128	3	4	53.86
VGG-16	conv3-3	256	3	4	31.28
V00-10	conv4-3	512	3	8	27.66
	conv5-3	512	3	16	51.52
	conv2-2	128	3	16 4 4	51.25
VGG-19	conv3-4	256	3	4	33.56
	conv4-4	512	3	8	30.17
	conv5-4	512	3	16	55.55
	conv2	192	3	4	45.06
GNet	icp1	256	-	8	38.44
Givet	icp2	480	-	8	31.66
	icp3	512	-	16	35.99
	conv2	192	3	4	49.39
GNet-s1	icp1	256	-	4	41.85
Unet-si	icp2	480	-	4	32.18
	icp3	512	-	8	32.87

Multiscale object detection

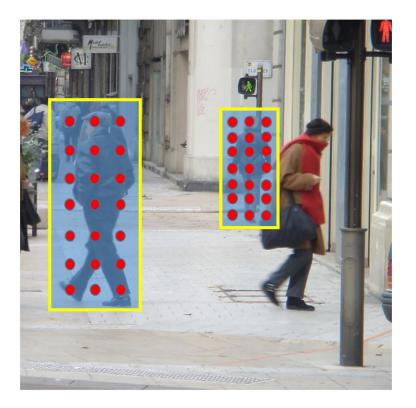


Depth

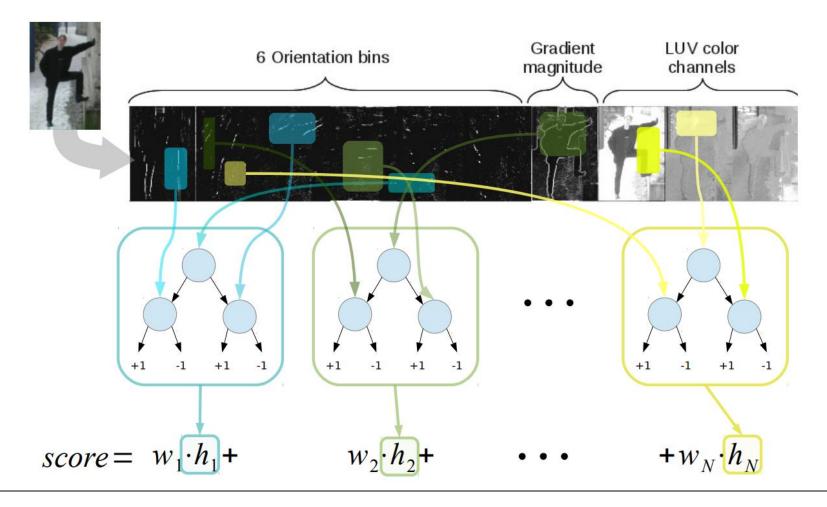
Multiscale object detection

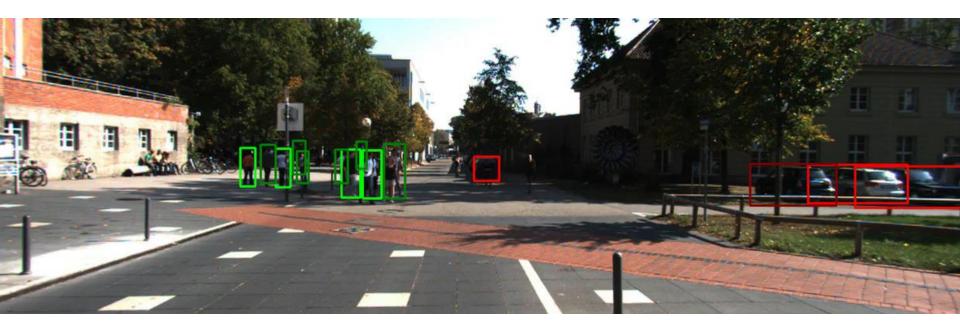
Multiscale sliding window :

- Single image feature scale
- Single pedestrian classifier model
- Feature sampling adapted to window size

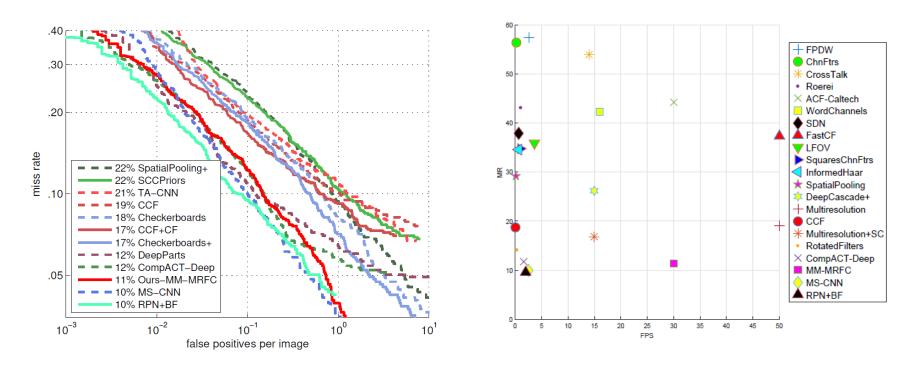


[Dollar et al. 2009, Benenson 2016]





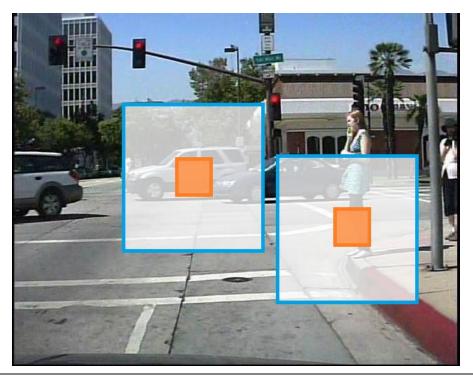
- Caltech Pedestrian benchmark
 - 11.41 % avg. MR at 30 FPS
 - 9.58 % avg. MR at 25 FPS using deep conv. chnl. features



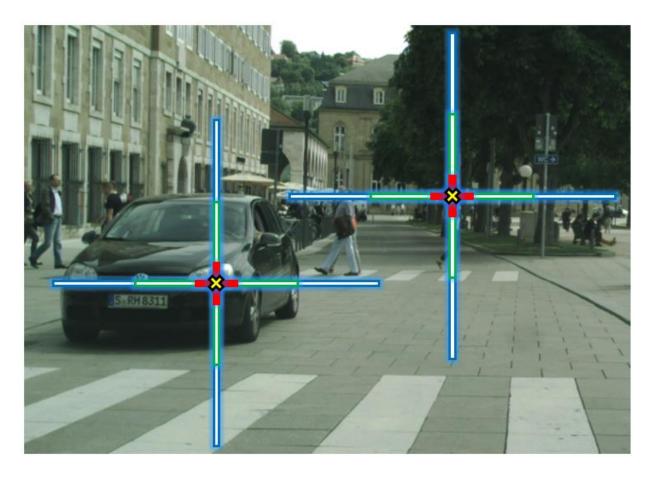
Semantic Segmentation

Similar classification scheme for pixels:

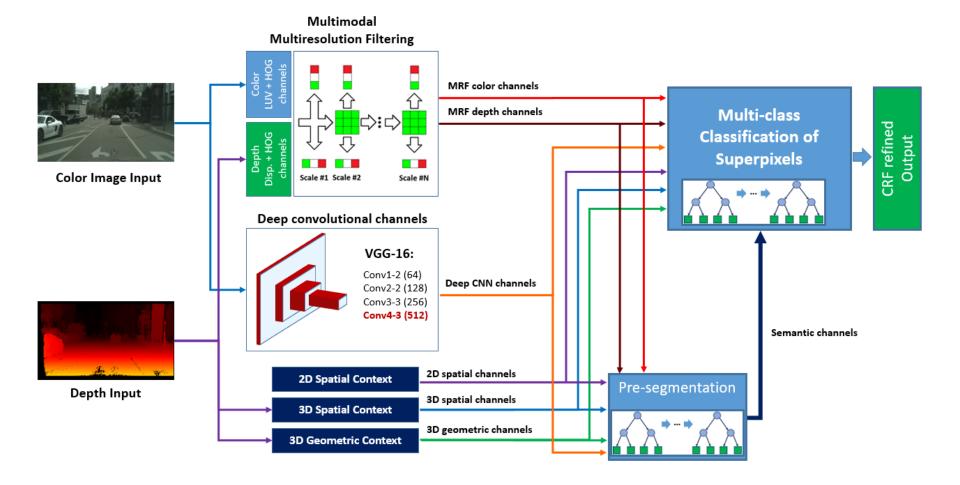
- Boosting over Multiresolution Channel features
- **Short** range features => **local structure**
- Long range features => context



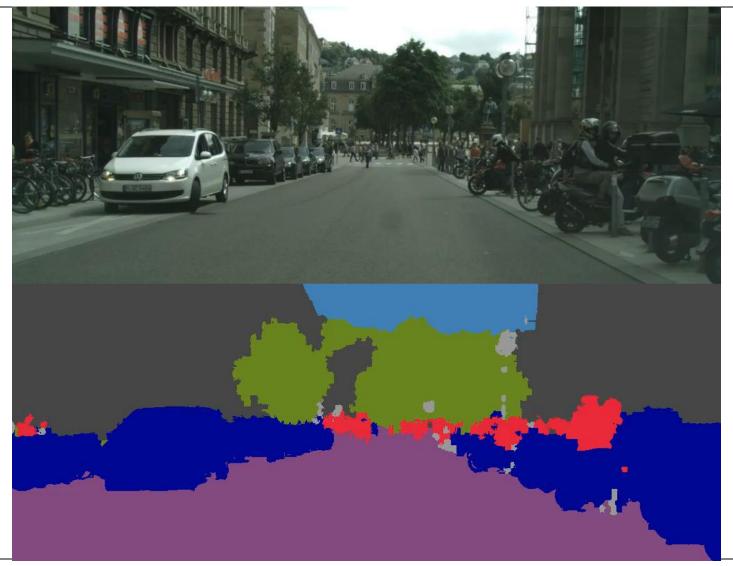
Simplified multi-range classification features:



Semantic Segmentation



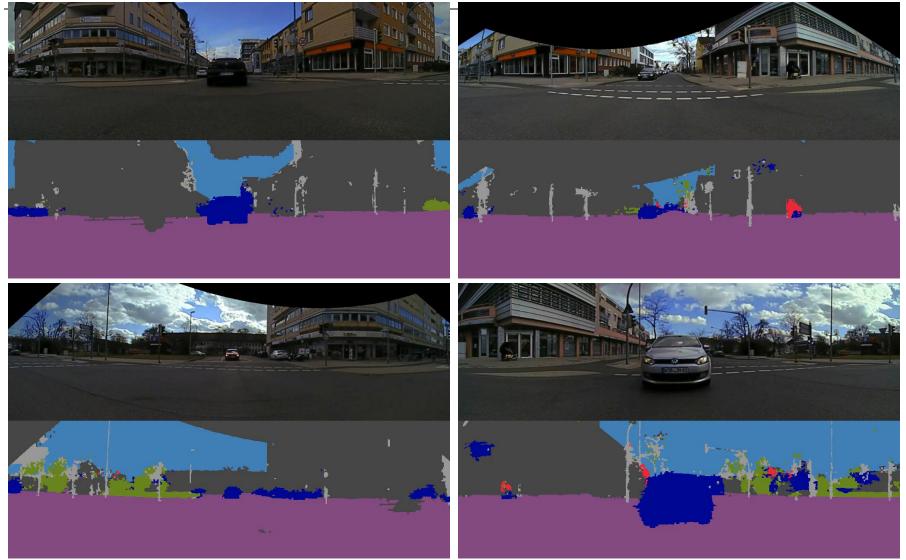
Segmentation Demo (Cityscapes)

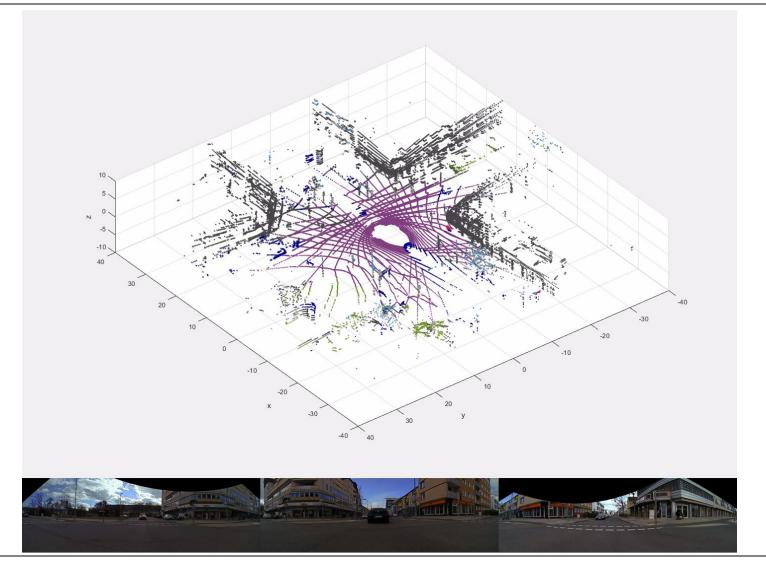


Segmentation performance using different features (validation set – 7 classes)

	Mean loU	Mean Acc.	Global Acc.
Low level: multimodal MRFC	71.5	81.8	90.8
+ Intermediate level: CNN channels	73.2	82.7	91.2
+ High level: 2D + 3D channels	75.1	84.6	92.1
+ Pyramidal Context	76.8	86.7	92.5
Pre-segmentation	61.2	76.8	85.4
Final segmentation	78.8	87.3	93.6
Final segmentation + CRF	79.9	88.6	94.3

Semantic 3D perception





- Boosting over channel features:
 - enables easy fusion of different feature types
 - computational cost friendly
 - easy tuning
- Deep convolutional channels
 - captures features in a hierachical manner
 - deep neural nets are evolving quickly
 ERFNet runs at 20 ms

Acknowledgment:

This work was supported by the EU H2020 project, UP-Drive under grant nr. 688652

Thank you for your attention! Questions?