
Image Rectification and Matching Solutions 
Optimized for Dedidated Hardware Accelerators 

 

Cristian-Cosmin Vancea 
Computer Science Department 

Technical University of Cluj-Napoca 
Cluj-Napoca, Romania 

e-mail: Cristian.Vancea@cs.utcluj.ro 

Sergiu Nedevschi 
Computer Science Department 

Technical University of Cluj-Napoca  
Cluj-Napoca, Romania 

e-mail: Sergiu.Nedevschi@cs.utcluj.ro 
 

 
 
 

Abstract—The late explosion of hardware accelerated devices on 
market has enabled much interest towards fast and energy 
efficient solutions for the computationally intensive problem of 
image matching and dense 3D reconstruction. From the 
perspective of camera projection model the task can be simplified 
if the images are rectified for epipolar alignment in a 
preprocessing step. We focus our interest on identifying a 
rectification model and several classes of matching algorithms as 
candidate for real-time implementation into embedded devices 
installed on vehicles. Then we make a thorough analysis of 
existing solutions and identify the capabilities offered by the 
hardware underneath. We present our solutions for image 
rectification and matching in FPGA. We point the benefit from 
implementing an original caching technique which optimizes 
access to the image memory when performing rectification. 
Additionally, we have designed several optimization strategies 
capable to reduce the hardware costs for image matching. Our 
system running on an old class FPGA performs image 
rectification and matching in real-time and classifies between the 
top best solutions in computational performance and energy 
efficiency. 

Keywords—stereovision; image rectification; image matching; 
FPGA; digital design 

I.  INTRODUCTION 
The field of autonomous vehicles requires state-of-the-art 

solutions in domains such as perception, decision-taking, 
motion planning and control. Perception plays a significant role 
in the pipeline by extracting accurate information from the 
surrounding environment, which is critical for searching a 
feasible trajectory at the higher decision-taking level. Details 
such as vehicle dynamics, position of obstacles, road 
boundaries, represent critical data for accurate and safe in-
traffic decisions. With digital world becoming more visual the 
number of images needed to be processed in real-time is 
increasing. Such a task is demanding in both, computation and 
memory. Single-machine environments [1] often lack 
sufficient computational power and memory, while multi-
machine environments add communication and control 
overhead. For hardware makers the push is to create low-cost 
systems to ensure real-time analysis and reduce the amount of 
data traffic. There is increasing demand for smaller, energy-
efficient and powerful computational systems that can be 
placed outside offices, in the end devices, such as smartphones 
or automated vehicles. That requires not only new materials but 
also different packaging to ensure high performance with low 
energy cost and increased density. 

In terms of energy efficiency Field Programmable Gate 
Arrays (FPGA) are superior to high-end Graphics Processing 
Units (GPU), which offer impressive floating-point 
performance. Technology is advancing rapidly and with the 
increasing number of integrated Digital Signal Processing 
(DSP) units in the FPGA fabric, their floating point capability 
is continuously improving. The key point for both classes of 
devices is their high degree of parallelism.  

Regarding applications for Advanced Driver Assistance 
Systems (ADAS), the need to facilitate smarter vision tasks is 
well concentrated on implementation with hardware 
accelerators [2][3][4] due to their capabilities for real-time 
analytics (detection, recognition, classification and tracking), 
video processing (2D, 2.5D, 3D visualization and 
reconstruction) and intelligent data transport through I/O 
components (Ethernet, AVB and CAN). 

Nowadays markets share a large variety of components 
based on LIght Detection And Ranging (LIDAR), radar, 
ultrasonic, infrared or video bandwidth. These sensors provide 
data in different formats and one of the most challenging tasks 
is to correlate measurements into a unique representation 
viable for processing. Images captured by cameras are 
represented by pixels, which must be converted into distances 
expressed in a meaningful world coordinate system. Aiming 
for rapid and energy efficient 3D reconstruction we make an 
ample overview of state-of-the-art in hardware optimized 
solutions for image rectification and matching. We identify the 
algorithmic models commonly used in the literature and we 
analyze a consistent list of implementations for various 
platforms, while considering for possible accuracy flows, their 
speed, the computational performance and the energy 
consumption. We contribute with our original architectures 
implementing image rectification and matching in FPGA. For 
image rectification we developed an original caching technique 
which improves the access to image memory. The image 
matching entails optimization solutions capable to reduce the 
amount of allocated hardware. 

The paper is organized as follows. In Section II we present 
the analytical model for image rectification and the classes of 
algorithms for image matching used by a majority of 
implementations proposed in the literature. In Section III we 
make a thorough study of existing solutions for image 
rectification and for image matching, which entail optimization 
strategies for hardware acceleration. We also refer to our 
proposed solutions and we initiate a parallel analysis to 
properly identify the contributing elements. Section IV offers 
a brief list of conclusions. 

AUTOMATION COMPUTERS APPLIED MATHEMATICS, VOL. 27, No. 1, 2018 13



II. STANDARD METHODS FOR IMAGE RECTIFICATION AND 
MATCHING 

The reconstruction of the surrounding scene, from images 
captured by cameras at different view angles and positions, has 
raised the problem of correlating projections associated to the 
same point in the scene. Referring to a point in one image this 
process involves an exhaustive search in the other image. 
Extending to entire image the problem reaches exponential 
scale. Using the properties of the epipolar constraint for stereo 
cameras the search space can be restricted to the epipolar line. 
For a stereo configuration the epipolar lines intersect into a 
unique point, called the epipolar point, whose position is 
strictly influenced by the intrinsic parameters (focal distance, 
skew, principal point) and by the relative extrinsic parameters 
of the cameras (rotation and translation). For typical 
stereovision systems in automotive industry the epipolar points 
lye outside the images. When the epipolar points 
corresponding to each camera are stretched to infinity the 
epipolar lines become parallel. If their orientation is horizontal 
or vertical in both images the pair of cameras align in canonical 
configuration. In such case the corresponding image 
projections will always encounter similar position on one of the 
image axes. This property greatly simplifies the correlation 
process for several reasons: 

• The computation of the epipolar lines is no longer 
necessary. 

• The support window used by matching techniques 
requires no correction, otherwise used to cancel the 
cameras’ relative orientation. 

• When searching for correlations data redundancy can 
be exploited for reutilization and fast optimization. 

A. Image rectification for calibrated systems 
The canonical configuration is an ideal case of epipolar 

constraint not met in practice. The common solution proposed 
by the scientific community is the process of image 
rectification which makes the epipolar lines coincide with the 
scanlines. The images will appear as captured by a canonical 
configuration obtained through rotating the original cameras 
while keeping the optical centers fixed [5]. It resumes to 
computing the rectifying transformations and the Perspective 
Projection Matrices (PPM) characterizing the new system. 
Since most stereo matching algorithms assume horizontal 
epipolar alignment, image rectification became prerequisite for 
stereo correlation. 

Considering the Pinhole model for camera capture a point 
X = [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇 in the scene projects in the image at coordinates 
(𝑢𝑢, 𝑣𝑣) according to the following equation: 

 [𝑢𝑢, 𝑣𝑣, 1]𝑇𝑇 = (1/𝜆𝜆) ∙ A ∙ (R ∙ X + t), (1) 

where A is the matrix of intrinsic parameters, R is the camera 
rotation matrix, t is the translation vector and 𝜆𝜆 is a scaling 
factor. A , R  and t , respectively are estimated through 
specialized camera calibration techniques. If the intrinsic 
parameters A′  and the rotation matrix R′  are defined for 
epipolar alignment [6] it is possible to express a mapping from 
original image coordinates to rectified image coordinates as: 

 [𝑢𝑢′, 𝑣𝑣′, 1]𝑇𝑇 = (1/𝜆𝜆′) ∙ A′ ∙ R′ ∙ R−1 ∙ A−1 ∙ [𝑢𝑢, 𝑣𝑣, 1]𝑇𝑇. (2) 

The inverse relation from rectified image coordinates to 
original image coordinates is called inverse mapping and 
allows integration of distortion parameters [7] as follows: 

 �
𝑢𝑢
𝑣𝑣
1
� = A ∙ �

𝑥𝑥� + 𝑥𝑥�𝑚𝑚1𝑟𝑟2 + 𝑝𝑝1(𝑟𝑟2 + 2𝑥𝑥�2) + 2𝑝𝑝2𝑥𝑥�𝑦𝑦�)
𝑦𝑦� + 𝑦𝑦�𝑚𝑚1𝑟𝑟2 + 𝑝𝑝2(𝑟𝑟2 + 2𝑦𝑦�2) + 2𝑝𝑝1𝑥𝑥�𝑦𝑦�)

1
�, (3) 

where 𝑚𝑚 , 𝑝𝑝1 , 𝑝𝑝2  represent distortion parameters obtained 
from calibration, 𝑟𝑟 = �𝑥𝑥�2 + 𝑦𝑦�2 and 

 [𝑥𝑥�,𝑦𝑦�, 1]𝑇𝑇 = 𝜆𝜆′ ∙ R ∙ R′−1 ∙ A′−1 ∙ [𝑢𝑢, 𝑣𝑣, 1]𝑇𝑇. (4) 

Using either direct mapping or inverse mapping, it is 
possible to generate the rectified image from pixels of original 
image. If sub-pixel precision is required the rectification can 
adopt interpolation of pixels from close vicinity.  

B. Techniques for dense disparity computation 
Depth information is critical for environment perception in 

autonomous systems. Stereo reconstruction is mostly affected 
by the accuracy of stereo matching algorithms looking for pixel 
correspondences in the captured frames. The displacement 
between matched points (disparity) is directly inferred in the 
depth estimation. There are three classes of matching 
algorithms delimited by their characteristics, accuracy and 
speed [8]: local, global and semi-global. 

Global approaches define an energy function as summation 
of a data term and a smoothness term. The data term sums the 
pixel-wise matching costs. Complex forms of cost aggregation 
are not necessary. The smoothness term is mostly based on 
piecewise disparity localization and can be weighted according 
to prior segmentation results. Other possible terms could be 
used for penalizing occlusions, treating visibility or enforcing 
left/right symmetry. There are several strategies to search for 
the disparity map that minimizes the global energy. Methods 
based on dynamic programming usually perform 1D scanline 
optimizations, but encounter negative streaking effects. This 
was partially solved with tree-based variants [9]. The 
alternative solution was to use more complex algorithms such 
as graph-cuts [10] or belief propagation, which perform direct 
2D optimization. The layered approach in [11] integrated 
information from image segmentation: using pixel-wise 
classification several plane models were defined in disparity 
space and were further refined iteratively. Another possibility 
was to infer disparity gradient into the energy function as 
representation of local surface orientation [12]. A patch-based 
approach [13] attached plane coefficients to pixels and 
performed spatial, view and temporal propagation for several 
consecutive iterations. Even if highly appreciated for accuracy, 
these methods suffer from slow processing. 

Local block-matching algorithms use a restricted area of 
interest around each point to compare information from both 
images. The reduced support and the absence of global 
constraints is more likely to provide errors in featureless 
regions or repetitive patterns, but favors real-time performance 
and small memory footprint, which facilitate the run on 
embedded and mobile devices. With increased window size, 
the number of mismatches is reduced, unfortunately the 
detection rate at object boundaries is compromised. Usually, 
the support neighborhood takes the form of a rectangle [14] 
which favors frontal parallel surfaces. Allot of effort has been 
invested into adaptation for slanted surfaces [15]. Various 
matching metrics were proposed to compute the matching cost 
[16]. Cost aggregation based on single-block or multi-block 
computation [17] was implemented for smoothing. Since large 
aggregation blocks reduce mismatching, but also negatively 
influence object borders, adaptive and shifting windows were 
proposed to tackle the problem. Usually, a final disparity 

14 AUTOMATION COMPUTERS APPLIED MATHEMATICS, VOL. 27, No. 1, 2018



refinement is adopted to remove the peaks, to check the 
consistency or to fill the invalid gaps. 

An alternative to previous solutions was proposed by Semi-
Global Matching (SGM) approaches with results similar to 
most expensive methods, but allowing for real-time 
performance when implemented for smaller images or 
specialized hardware accelerator devices [18]. It follows 
dynamic programming, but avoids inappropriate behavior by 
approximating 2D energy optimization through minimizing on 
several 1D scanlines oriented at different angles, in polynomial 
time. The number of proposed scanlines ranges from four [19] 
to sixteen [20]. Correlation costs and smoothness constitute the 
basic elements of energy computation. Smoothness was 
expressed as summation of a regular penalty 𝑃𝑃1  for small 
disparity discontinuities, like changes in object shape, and a 
higher penalty 𝑃𝑃2 for the larger discontinuities found at border 
crossing. For a given disparity map 𝐷𝐷 and the set of pixels 𝑆𝑆 
the general expression [21] of the energy function is: 

 𝐸𝐸(𝐷𝐷) = ∑ �𝐶𝐶�p,𝐷𝐷p� + ∑ (𝑃𝑃1 ∙ 𝑇𝑇��𝐷𝐷p − 𝐷𝐷q� = 1� +q∈𝑁𝑁pp∈𝑆𝑆

+𝑃𝑃2 ∙ 𝑇𝑇��𝐷𝐷p − 𝐷𝐷q� > 1�)�,  (5) 

where 𝑁𝑁p represents the set of all neighbors on the direction of 
the scanlines, 𝐶𝐶(∙,∙)  is the cost function and operator 𝑇𝑇[∙] 
equals 1 or 0 depending on the argument value, if it is true or 
false, respectively. A third penalty 𝑃𝑃3 based on second order 
prior along the scanline is suggested [22] to favor smooth 
transitions. Its values is added to  𝑃𝑃1 and 𝑃𝑃2. Considering a 
scanline direction represented by the vector r, the intermediary 
elements of the cost volume minimizing the energy will be 
optimized by the following recurrent expression: 

 𝐶𝐶r(p,∆) = 𝐶𝐶(p,∆) + min �𝐶𝐶r(p − r,∆),𝐶𝐶r(p − r,∆ − 1) +

+𝑃𝑃1,𝐶𝐶r(p − r,∆ + 1) + 𝑃𝑃1, min
𝑑𝑑
𝐶𝐶r(p − r,𝑑𝑑) + 𝑃𝑃2� −

−min
𝑑𝑑
𝐶𝐶r(p − r,𝑑𝑑).  (6) 

The final cost will be the sum for the entire set of scanlines: 

 𝐶𝐶′(p,∆) = ∑ 𝐶𝐶r(p,∆)r . (7) 

For outdoor scenes usually generating slight decalibrations 
of the system the preferred cost metric is Census Transform 
calculated on dense or sparse masks (Fig. 1) for the support 
window. It is invariant to luminosity and contrast differences. 
It shows robust behavior in difficult conditions or presence of 
radiometric errors common to production systems. A slight 
variation, the Center-Symmetric Census Transform [23] has 
proved more reliable because it does not suffer from noisy 
central pixels. 

The latest efforts are focused on integrating deep-learning 
techniques at different layers of the traditional pipeline [24]. 
A special interest is given to end-to-end Convolutional Neural 
Networks (CNN) [26] which can generate accurate disparity 
maps directly from image pairs. 

III. IMPLEMENTATIONS OPTIMIZED FOR HARDWARE 
ACCELERATION 

Recent innovations in stereovision confront with an 
emerging need to process the large amount of imagery captured 
by high-definition cameras. Usually, the applications are 
deployed on mobile devices which are required to be energy 
efficient and fast. Taking advantage of certain patterns of 
memory access exhibited by image processing applications it 
is possible to estimate the required level of connectivity, 
scheduling and memory usage, thus being able to differentiate 
between suitable computing platforms such as DSP, 
Application Specific Integrated Circuits (ASIC), FPGA, GPU 
or Central Processing Units (CPU). The next two sections 
study the implementation of image rectification and matching 
from the perspective of optimization with specialized hardware 
acceleration. 

A. Hardware solutions for image rectification 
The FPGA architecture in [27] performed noise removal, 

image rectification with bilinear interpolation and matching. 
For the image rectification part pixels were stored in line buffer 
units composed of four separate buffers corresponding to odd 
and even rows and columns. This allowed the simultaneous 
access to all neighboring pixels of a sub-pixel location. Line 
buffers were implemented as circulars buffers. The amount of 
memory allocated made possible to accept up to 64 pixels 
vertical displacement. The inverse mapping from rectified 
images to original images was computed on-the-fly. The linear 
functions at the base used coefficients computed from 
calibration data and stored within configurable registers. 
Multiplication and division operations required for bilinear 
interpolation were implemented with DSP units. The 
rectification unit was able to provide one rectified image pixel 
per clock cycle and was implemented on Xilinx Virtex-5 
FPGA. The system entailing image rectification and matching 
was capable to run at 37 fps on 640x480 images. 

Image rectification optimized for GPU was proposed in 
[29]. The algorithm was implemented according to model 
specifications in [5]. The process was based on inverse 
mapping Look-Up Tables (LUT) computed for each image. 
Their contents were computed once, at system startup, based 
on preliminary calibration data. The option to use precomputed 
LUT allowed the integration of rectification with distortion 
removal, down-sampling and ground plane stereo, in a unique 
image warping. The correspondences were computed with sub-
pixel precision, therefore pixel intensities in the rectified image 
were obtained using bilinear interpolation of the neighboring 
values. For each captured frame the images were sent to the 
GPU texture memory which owned a cache facilitating 
accelerated access to neighboring pixels. Additionally, it 
included hardware support for fast bilinear interpolation. The 
processing time was 0.065 ms for 512x383 images and 0.179 
ms for 1024x768 images, without considering the transfer time 
between CPU and GPU. 

The FPGA architecture in [30] was capable to perform non-
linear image transformation based on finite differences in 
conjunction with polynomial approximation. Such 

     
  (a)  (b) (c) (d) (e) 

Fig. 1 Sparse masks for Census Transform 

    

VANCEA et al.: IMAGE RECTIFICATION AND MATCHING SOLUTIONS OPTIMIZED FOR DEDICATED HARDWARE ACCELERATORS 15



transformations could implement image undistortion and 
image rectification altogether, with some level of precision 
loss. The degree of the polynomial functions and the number 
of bits used for accuracy were customized for expected 
precision and reduced amount of allocated resources. In 
practical examples four degree polynomials were able to 
provide errors less than half a pixel. The implementation on 
Xilinx Spartan-3E FPGA achieved real-time performance with 
latency of few image lines. 

Following the same principle, but using matrix operations 
instead of polynomial functions, the implementation in [31] 
was deployed on Xilinx Virtex 4 FPGA (model XC4VLX60) 
and reached 367 fps and 120 fps for 640x480 and 1280x720 
images, respectively. Based on initial calibration data, images 
were rectified according to epipolar alignment along with 
radial and tangential distortion removal. At the cost of 0.13 ms 
latency, an image buffer covering several image rows was 
implemented in BRAM units to assure consistent flow between 
input image and rectification circuitry. 

Stereo rectification for full High-Definition images 
(1920x1080) was implemented on GPU based on OpenGL 
objects such as frame buffer and vertex buffer [32]. The 
component was running real-time at 70 fps. The strategy was 
based on precomputed LUT with inverse mapping. At the cost 
of memory bandwidth usage and storage consumption, the 
adoption of LUT saved the system from complex 
computational efforts. 

Since the size of rectification LUTs is strictly dependent on 
image resolution and fractional precision it is very common to 
encounter situations not comfortable with the amount of on-
chip memory (BlockRAM units) available on mid-range FPGA 
chips. Therefore, external memory (DDR SDRAM, SRAM) is 
usually preferred by most architectures, but has the 
disadvantage of higher latency and complex communication 
protocol. For this reason the solution in [33] proposed a 
forward mapping scheme with offline compression algorithms 
to reduce the typical size of LUT to a reasonable storage 
capacity met in regular low-cost FPGAs. The additional 
amount of hardware needed for decompression was also 
negligible. Two LUTs were allocated per image, encoding 
horizontal and vertical coordinates separately. The fractional 
part was rounded to nearest available pixel, thus eliminating 
the possibility for sub-pixel interpolation. The mapping used 
one-to-one pairing with the sole exception that one pixel in 
original image could target two adjacent vertical pixels in the 
rectified image, if the direct mapping was linked to the pixel 
on top. Such situations were marked as double-targets and the 
measure was taken to fill some of the voids (data loss 
consisting in unmapped pixels due to one-to-one mapping 
restrictions). The LUT was expressed as a set of breakpoints 
marking double-targets or coordinate changes of maximum 
one pixel. Each row and each column was reserved a maximum 
number of possible breakpoints. Such limits were vulnerable to 
higher distortions, cameras misalignment or combination with 
down-sampling. The images were parsed horizontally, from 
top to bottom. Pixels from rectified image with a corresponding 
position outside the original image were marked as non-targets 
and were filled with mapped-data from close-surroundings. 
Due to some latency in the hardware design, each breakpoint 
from the vertical LUT should have encoded no less than four 
consecutive pixels for correct decompression. These fine 
details suggested several sources of possible inconsistency in 
the resulting rectified images. The proposed architecture 
implemented on Virtex 5 FPGA (model XCUVP-110T) was 
able to operate at 347 fps with 1024x768 images and without 
need for external memory. The LUT was coded as ROM using 

a consistent amount of BlockRAM. Additionally, the double-
target encoding required a minimal amount of buffering on the 
output. The outcome was less available storage on-chip for the 
task of disparity estimation. Some limitations were removed 
with the improved version proposed later for the same FPGA 
model [34]. Extending the double-target condition from a 
mapped pixel to all its unmapped neighbors, except the ones at 
the left and right, the number of voids (data loss) was reduced, 
and also the number of successive breakpoints, which 
decreased the risk caused by latency. Even if there was still a 
small risk for possible breakpoints located at consecutive 
pixels, the situation was handled by keeping active a constant 
buffer of the most recent six consecutive breakpoints. 
Additionally, the one pixel limit imposed on row or column 
change was extended to two pixels, in order to gain more 
flexibility. The architecture achieved a supplemental 2.5 times 
internal memory consumption, while providing correction 
capabilities for greater cameras misalignment and distortion at 
269 fps. 

When leveling up the image resolution for cameras with a 
wide field of view (at 1100 the distortion is increased) the 
coordinate differentials at breakpoints may well exceed a two 
pixels jump. In [35] the breakpoint structure was reconfigured 
to extend the stepping interval to [-8, 7]. The latency of the 
compressed LUT memory was reduced to only two clock 
cycles and the critical case of consecutive breakpoints was 
solved for one pixel differentials only: as indicated by a special 
field in the breakpoint descriptor, the current row was 
incremented/decremented on-the-fly, if needed for the next 
pixel, without allocating another breakpoint. Additionally, the 
size of the LUT memory was significantly reduced through 
variable breakpoint indexing. The fixed number of breakpoints 
allowed for rows and columns was replaced with a list-like 
LUT implementation. Indices marking the locations of the first 
breakpoints in each row or column were stored in a separate 
array. Hence the breakpoints’ memory was completely filled 
without counting for possible holes. The buffer size reduction 
was around 58-65% compared to the model in [34] and the 
implementation on Altera Cyclone V E FPGA (model 
5CEBA7F27) supported real-time operation at 50 fps for 
1920x1080 resolution. 

For situations necessary to avoid memory allocation for 
LUT the solution in [36] proposed on-the-fly computation of 
inverse mapping equations with double precision floating point 
units. The set of operations was based on calibration 
parameters obtained offline. In the initial step, rectified image 
coordinates were mapped into the original camera frame. A 
secondary step performed distortion removal and mapping to 
original image coordinates. A memory buffer containing 
several image rows was implemented for efficient access to 
neighboring pixels after remapping. Bilinear interpolation was 
used for sub-pixel precision. Real-time was achieved on a 
Xilinx Virtex 7 FPGA board (model XC7V2000T) at 
1280x720 resolution. 

Several common lossless methods were modified to 
enhance performance in an adaptive combination [37]. The 
solution used forward mapping without sub-pixel interpolation 
and implemented separate decoding hardware and LUTs for 
horizontal and vertical coordinates. An initial differential 
coding, with horizontal direction on rows and vertical direction 
for first column, was used to transform coordinates into data of 
low variation, low entropy and reduced bit-length for symbol 
representation. The obtained form was suitable for optimal 
compression with either Huffman coding [38] or a modified 
version or Run-Length Encoding (RLE). The best was chosen 
for each dataset and camera configuration. The efficiency was 

16 AUTOMATION COMPUTERS APPLIED MATHEMATICS, VOL. 27, No. 1, 2018



analyzed offline by computing the average Inverse 
Compression Ratio and its variation. Smaller values indicated 
better performance. In a general term, the Huffman coding, 
which is based on entropy, demonstrated high stability of 
results by small variations of Inverse Compression Ratio. The 
RLE was more optimal due to smaller average of Inverse 
Compression Ratio, but was less stable. The improvement 
proposed for RLE aimed to generate breakpoints only when 
differential codes were passing from the most frequent symbol 
to any other symbol. A typical breakpoint format was 12-bit 
wide and contained the less-frequent symbol on four bits (one 
for sign and three for magnitude) paired with the number of 
previous occurrences counted for the most frequent symbol. 
The counter section was limited to seven bits in the standard 
breakpoint format. It was extended to 11 bits within a second 
breakpoint format, specially designed for the most frequent 
symbol. In both cases the 12th bit indicated the model of the 
breakpoint. Consecutive repetition of breakpoints with 
extended counter section allowed for unlimited occurrences to 
be coded for the most-frequent symbol. The adaptive 
combination reached both stability and performance with an 
average 7.19% compression ratio, ranging from 1.54% to 
11.03%, depending on tested dataset. The implementation on 
Xilinx Virtex5-VLX330 FPGA reached 261 fps for 1280x720 
images. 

The inverse mapping approach in [39] proposed LUT size 
reduction through down-sampling. Horizontal and vertical 
coordinates of the original map were sampled and stored in low 
resolution LUTs. When generating the rectified image, normal 
resolution coordinates were generated from sampled 
coordinates through separate linear interpolation on horizontal 
and vertical axes. The solution had an obvious disadvantage 
due to the mapping accuracy loss resulted from extracting the 
true position from down-sampled data. For a certain range of 
configurations the loss was in a reasonable domain. Overall, 
three interpolation units were required: two for interpolating 
the horizontal and vertical mapping and a third for interpolating 
neighboring pixel intensities when estimating the rectified 
pixel value. 

Following the model elaborated in [5] we proposed a 
pipeline architecture for FPGA [40]. Given its LUT-based 
implementation for inverse mapping combined with bilinear 
interpolation we were capable to integrate any of the following 
operations in a single image warping: rectification, 
undistortion, down-sampling and ground-plane stereo 
correction. The transformation is lossless and the semi-
sequential access to image pixels in memory is reduced by 
implementing an original cache model. The implementation on 
Xilinx VirtexE-V600EFG680 achieved approximately 85 fps 
for 640x512 images. When ported on Xilinx Virtex4- 
XC4VLX160 the speed increased to 125fps. Both cases were 
limited by slow transfer rates with the local memory and with 
the CPU, which are vendor specific. 

B. Image matching implementations with specialized 
hardware support 
An early hardware solution [41] providing near real-time 

dense stereo reconstruction was a 5-camera system calculating 
200x200 depth maps at 30 fps. The speed was halved with sub-
pixel disparity interpolation. The disparity range was 30 and 
the fractional precision was supported on three bits. The 
preprocessing phase performed Laplacian of Gaussian (LoG) 
and non-linear compression based on histogram equalization. 
It was followed by image rectification with LUT stored in 
memory and by interpolation. The matching solution used 

Sum of Absolute Differences (SAD) as cost metric. The 
aggregation was performed over results from several camera 
baselines. The resulting sum over SAD was rewritten to allow 
hardware optimization. The disparities were searched at 
minimum costs and refined with parabola sub-pixel 
interpolation over neighboring costs: 

 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(p,∆𝑚𝑚𝑚𝑚𝑚𝑚) = 1
2
∙ 𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚+1)−𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚−1)
2𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚)−[𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚+1)+𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚−1)]

.(8) 

The infrastructure was based on off-the-shelf components 
including ROM, RAM, pipeline registers, convolvers, 
digitizers and Arithmetic Logic Units (ALU). They were 
connected through a Versa Module Europa bus (VMEbus) and 
controlled by a VxWorks real-time processor. The C40 DSP 
array was self-proprietary and was used for interpolation. 

A system developed on Programmable And 
Reconfigurable Tool Set computer (PARTS) generated 
320x240x24 maps at 42 fps and 22.5 W power consumption 
[42]. The cost computation was based on Census Transform 
and Hamming distance. Minimum selection was used to 
estimate disparities. The entire architecture was developed on 
16 Xilinx 4025 FPGA devices connected in a partially torus-
like configuration. They had 16 tightly coupled SRAM units. 

The small vision module proposed in [43] was 
implemented on DSP units (model ADSP2181) running at 33 
MHz and consuming 600 mW. The maps were sized 
160x120x32. The speed performance was only 6 fps, however 
real-time was achieved when ported on a higher class DSP 
(model TMS320C60x) running at 200 MHz. The algorithm 
performed LoG filtering, image rectification, local area 
normalization, correlation based on SAD, disparity 
computation through winner-takes-all and post-filtering based 
on texture confidence and left-right consistency. Sub-pixel 
interpolation in the final stage provided fractional precision on 
two bits. 

Tyzx Inc. has developed a stereovision machine on ASIC 
[44] capable of 512x480x52 dense disparity maps at 200 fps. 
The fast implementation with dense Census Transform 
allowed 52 simultaneous comparisons when searching for 
minimum cost disparity. The best match was located with five 
bits sub-pixel precision. Total power consumption was below 
1 W. Initial image rectification was also performed in 
hardware. Several configurations were provided for different 
resolutions, with speed being influenced by their frame rate 
capabilities. In later proposal [45] the algorithm was ported on 
a mixture hardware of ASIC, FPGA, DSP and PowerPC. 

The miniature trinocular system in [46] has been built on 
the 60 MHz Xilinx XC2V2000 FPGA chip with tightly 
coupled local SRAM. The performance was 30 fps on a 
640x480x64 configuration providing two bits for fractional 
precision. The speed raised to 120 fps with smaller 320x240 
resolution maps. Internally, it performed epipolar 
rectification, vertical Gaussian and Laplacian filtering, data 
compression and matching based on Sum of SAD, minimum 
cost selection for disparity estimation and sub-pixel 
interpolation with parabola (8). At the expense of using more 
memory, cost aggregation was optimized by accumulating the 
costs on columns and rows for data reuse at consecutive 
disparities. The cameras were fixed to the device with 
horizontal and vertical baselines. 

Constrained by reduced resources in early FPGAs the 
pipeline architecture proposed in [47] considered replacing 

VANCEA et al.: IMAGE RECTIFICATION AND MATCHING SOLUTIONS OPTIMIZED FOR DEDICATED HARDWARE ACCELERATORS 17



simultaneous cost computation for the complete disparity 
range, with hardware support for a pair of shifting local 
ranges, called correlation windows. One window was centered 
on the disparity found in the previous frame in order to exploit 
temporal information – at higher rates it was estimated the 
disparities would not suffer major changes at consecutive 
frames. The other window was continuously sliding on the 
same row according to flexible customized rules. The optimal 
disparity suggested by the second correlation window had 
higher priority if the corresponding cost was better than the 
best found for the first widow. This way significant changes 
in disparity could be handled, if not immediately, then within 
several consecutive frames. The costs were computed in 
parallel for both windows, at three different scales with down-
sampling. The scales used were 1, 2 and 4 and the associated 
widows were sized 9, 5 and 3 pixels, respectively. The images 
were initially rectified with bicubic polynomials, in order to 
map original coordinates to rectified coordinates. The 
coefficients of the polynomial functions were computed 
offline using calibration data. A total of 64 scanlines were 
buffered for each image to assure safe rectification. After 
rectification the images passed through a Gaussian Pyramid 
filter and were down-sampled. Three quadrature-pair filters 
were applied at each scale, oriented at -450, 00 and 450. The 
results were used to compute Local-Weighted Phase 
Correlation (LWPC) costs as in [48]. Upon up-sampling from 
coarser scales using quadrature interpolation in the disparity 
domain and linear interpolation in horizontal domain, the costs 
sourced by all scales and orientations were summed up for 
disparity selection stage. With two similar architectures 
running concurrently to generate disparities for each image as 
reference, it was possible to detect mismatches and occlusions 
through left-right consistency check. The system was able to 
work at 30 fps on 640x480 images while handling a range of 
128 disparities. It was implemented on a platform consisting 
of four Altera Stratix S80 FPGA consuming 500 mW each. 

The pipeline architecture in [49] is a hardware optimized 
version of the dynamic programming-based maximum 
likelihood approach introduced in [50]. The implementation 
on FPGA applied two basic rules: uniqueness assumption, 
stating each pixel in the left image has one corresponding pixel 
in the right image, and monotonic ordering assumption over 
correct matches. The algorithm tried to find an optimal path 
through a match matrix of indicators highlighting whether 
pairs of pixels on the same scanline represent occlusions or 
not. The cost metric was based on squared differences and 
possible occlusions were penalized. By changing the original 
code and reducing the matrix size from an entire image to only 
two scanlines processed in parallel it was possible to achieve 
a theoretical speed of 36.33 fps on 512x512 images with 16 
disparities. A later optimized implementation ran at 64 fps on 
VGA images with 128 disparities [51]. 

The solutions so far are representative for the class of local 
block matching algorithms. Nevertheless, the interest for the 
more sophisticated SGM approaches has raised with several 
implementations in FPGA, CPU or GPU devices.  

The classic version proposed in [21] and later improved in 
[20], a hierarchical SGM with Mutual Information, has been 
optimized for nVidia GeForce 8800 ULTRA GPU [52]. A 
total of five levels were used, the images being halved for each 
level. The costs were optimized on eight scanlines (6, 7) with 
second penalty being adapted by image gradient. After 
estimating disparities at minimum cost, they were interpolated 

with parabola (8) for sub-pixel resolution and were smoothed 
with median filter. Validation was conducted with left-right 
consistency check on the same cost volume. Disparities found 
at coarse levels were up-sampled as initial guess for finer 
resolutions. It was noticed the speed performance did not scale 
well at low resolutions. Implementation was mainly based on 
OpenGL/Cg rendering commands. Only the computation for 
Mutual Information matching table was coded separately on 
GPU in a vertex shader program. The performance for 
640x480 images with 128 disparities reached 4.2 fps and 13 
fps for half resolution with half disparity range. 

Replacing Mutual Information with Absolute Difference 
and eliminating the hierarchical approach, the solution in [53] 
introduced a Cg-based implementation on nVidia GeForce 
7900 GTX GPU. The costs were optimized on eight scanlines 
by accumulation in an RGBA sweep plane texture. A shader 
pass extracted disparity information and two shaders 
performed left-right consistency check (based on same cost 
volume) to detect mismatches and occlusions, which were 
finally removed through hole filling. Tests on 320x240 images 
with 64 disparities achieved 8 fps and 13 fps for half resolution 
and half disparity. 

SGM with costs based on the sampling-insensitive 
absolute difference [54] was optimized for Compute Unified 
Device Architecture (CUDA) in [55]. A tile of threads was 
created to avoid memory bottleneck during cost computation. 
The optimization of cost volume was performed on eight 
scanlines according to (6, 7), with adaptive penalty 𝑃𝑃2 . 
Minimum cost search for disparity estimation was optimized 
using a naive scan-tree technique. Without left-right 
consistency check, hole filling and disparity smoothing, the 
implementation on nVidia Quadro FX 5600 GPU was able to 
process 450x375 images with 64 disparities at 5.85 fps.  
The FPGA solution in [56] was implemented on Xilinx 
Spartan-3a 3400DSP and was able to generate 680x400x128 
dense disparity maps at 25 fps and a power consumption 
beneath 3 W. Input images were rectified internally and 
filtered with 3x3 Gaussian. The architecture was implemented 
to generate two sequential 340x200 disparity maps. One was 
for images down-sampled with a factor of two and the other 
for a specified normal resolution region. Only 64 disparities 
were accounted, but values up to 128 were reached after 
remapping the initial disparity map to original resolution. For 
the normal resolution map, values larger than 64 indicated by 
the other map would replace current results. The matching cost 
was based on Zero-mean SAD (ZSAD) implemented in 
parallel for all possible disparities. The SGM optimization was 
performed in two scans for each map (four in total): one from 
top-left to bottom-right and a second scan backwards. Each 
time, the four neighbors left behind were evaluated according 
to (6) and their summation (7) was stored in external 
memories. Current scanline costs were saved in local buffers 
for fast computation. Through pipelining, all 64 disparities 
were evaluated in one clock cycle. Minimum cost and its 
neighbors were selected for disparity computation and sub-
pixel interpolation with symmetric-V: 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(p,∆𝑚𝑚𝑚𝑚𝑚𝑚) = 1
2

𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚+1)−𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚−1)
𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚)−𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚+1),𝐶𝐶(p,∆𝑚𝑚𝑚𝑚𝑚𝑚−1)}

. (9) 

A 3x3 median filter was used for refinement and finally, left-
right consistency check was performed by re-computing 
disparities with the same cost volume. Implementation on a 

18 AUTOMATION COMPUTERS APPLIED MATHEMATICS, VOL. 27, No. 1, 2018



Virtex4 class FPGA allowed an additional symmetric SGM 
branch implementation for full consistency check, without 
affecting frame rate. In the CPU implementation [57] the 
ZSAD was replaced by Census Transform for a dense 5x5 
window with 32-bit Hamming Distance. The images were 
downscaled with a factor of two and four, resulting in implicit 
10x10 and 20x20 Census masks. The matching was performed 
three times in a coarse-to-fine manner. Normal resolution map 
used 16 disparities, half and quarter resolution maps used 16 
and 32 disparities, respectively. The half resolution map 
covered the disparity range from 16 to 32 and the quarter 
resolution map covered the rest up to 128. Census computation 
was parallelized on several cores with line-wise OpenMP. The 
costs were optimized on eight scanlines. The images were 
scanned top-left to bottom-right and backwards. Each time 
four scanlines were integrated in the cost volume optimization 
with (6, 7). Considering one path, each ray was independently 
computed through OpenMP parallelization. Moreover, using 
128 bit registers with SSE and SSSE optimization it was 
possible to run this step for 16 concurrent disparities. Finally, 
disparities were searched at minimum cost and were 
interpolated for sub-pixel accuracy with Symmetric-V (9), 
followed by median filtering and consistency check using the 
same cost volume. The resulting maps were denser, but 
suffered some blocky effect from down-sampling. 
Implemented on an Intel Core i7-975ex CPU consuming 130 
W the system reached 14.5 fps for 640x320 images and 128 
disparities. 

A typical problem with FPGA solutions is the amount of 
external memory usage. Several buffering techniques were 
proposed in [27] to reduce memory bottleneck. The matching 
with SGM used Rank Transform as cost metric. The second 
penalty in (6) was adjusted for each pixel and each scanline 
according to the rank costs. The image was processed on a 
normal scan and a backward scan. Each scan optimized the 
costs on four scanlines, simultaneously. Multiple scanlines 
were processed in parallel. For each row the resulting 
optimized costs corresponding to each scanline were stored 
within three shift registers of different depth and passed to the 
next row as input. By cascading using such systolic array 
technique it was possible to process a slice of several scanlines 
in parallel. The costs resulting from the last scanline were 
stored in memory as input for the first row in subsequent slice. 
The disparity was estimated at minimum cost and validated 
according to uniqueness constraint. The same costs were used 
to estimate the paired image disparity. Finally, results were 
filtered with left-right consistency check and refined with 
median filtering. On a Xilinx Virtex-5 FPGA device input 
images of 640x480 pixels with 128 disparity range were 
processed at 37 fps.  

A later implementation of SGM with Rank Transform was 
elaborated for GPU in [28]. Each part of the parallel 
implementation was carefully analyzed concerning the 
limitations for instruction and memory throughput. A highly 
optimized scheme was defined for mapping into available 
resources. Optimal configurations were set for Rank 
Transform, median filtering, matching cost computation and 
scanline optimization. The time for 1024x768x128 disparity 
maps on nVidia Tesla C2050 GPU was 36 ms (27 fps). 

An efficient implementation of SGM and Census 
Transform [58] took advantage of the two levels of parallelism 
available in CUDA: coarse-grain parallelism which allows no 
inter-thread data communication and fine-grain parallelism 

for sharing data. Each processing step of the pipeline was 
implemented in a different kernel. The communication was 
performed using the cost volume. A sparse support window of 
9x9 was adopted for cost computation (Fig. 1b). Cost 
aggregation was employed on 5x5 neighboring blocks. The 
number of optimization scanlines was reduced to four. This 
had significant impact on speed improvement while 
decreasing memory bandwidth. Penalty 𝑃𝑃1  was removed to 
reduce depth scattering at object borders and non-textured 
areas. Disparities were computed in a winner-takes-all 
manner. A sinusoidal interpolation functions was proposed for 
sub-pixel precision. Left-right consistency check, based on a 
single cost volume, was applied to detect occlusions, finally 
removed through refinement techniques. The processing 
speed on 512x383 images with 56 disparities was 52.6 fps for 
the low class GPU nVidia GeForce GTX-280 and 90.9 fps for 
the higher class nVidia GeForce GTX-480. 

Another CUDA-based optimization for SGM was 
suggested in [59]. The cost metric was set to Absolute 
Difference. Eight cost optimization scanlines were used paired 
into four orientations. Each orientation was assigned a weight 
in the accumulation (7) and two pairs of penalties, each being 
used according to local image gradient. A total of 20 
parameters were trained using covariance matrix adaptation 
evolution strategy. During training each set of parameters was 
validated by the errors obtained with respect to ground-truth 
data. After estimating disparities at minimum cost, left-right 
consistency check validated results and median filtering was 
applied for smoothing. Sub-pixel values were extracted with 
parabola interpolation (8). Running on nVidia GeForce GTX-
480 GPU the algorithm achieved a speed performance of 11.7 
fps for 640x480x64 dense disparity maps. 

Instead of allocating memory to save the entire cost 
volume needed for scanline aggregation according to (8), the 
FPGA solution proposed in [60] suggests having the 
disparities searched at minimum cost found between all 
optimization scanlines. Initially, the image was scanned from 
top-left to bottom-right and optimization was performed on 
four scanlines. For each scanline the minimum cost was saved 
in memory along with its index and its neighboring costs that 
might be used for sub-pixel interpolation.  This represents four 
values for each scanline and 16 values in total. Also, two 
intermediary locations were added to store the global 
minimum and its index over all four scanlines.  It frees the 16 
locations for further use. This amounts to 18 memory locations 
for each pixel. Practically, the required memory footprint was 
reduced since classic SGM would have required a number of 
memory locations equal to the number of disparities. In a 
subsequent image scan performed backwards the other four 
scanlines were optimized similarly using the 16 now available 
memory locations. A third scan was required to choose the 
right minimum between intermediary values and results from 
backward scan. Experiments revealed such changes in 
minimum cost selection were having minimal influence at 
accuracy level. The cost metric adopted was Census 
Transform. Implementation on Xilinx Virtex 5 FPGA (model 
XC5VSX95T) revealed a processing speed of 10 fps on 
1024x1024 images with 64 disparities and 33 fps on 640x480 
images. When ported on mobile platform equipped with 
Xilinx Spartan 6 LX150 FPGAs the performance was 25 fps 
on 512x512 images and same disparity range. Optionally, 
disparities could have been validated with left-right 

VANCEA et al.: IMAGE RECTIFICATION AND MATCHING SOLUTIONS OPTIMIZED FOR DEDICATED HARDWARE ACCELERATORS 19



consistency check at the cost of additional hardware and 
double the processing time. 

A CPU based implementation of SGM enabled 
parallelization with SIMD instruction set [61]. The Center-
Symmetric Census Transform [23] costs were processed in 
parallel for eight 12-bit pixels using the 128 bit SSE registers. 
The computation of Hamming Distance was optimized by 
implementing parallel 4-bit LUTs in logic (PSHUFB 
instruction from SSSE3), thus avoiding memory bandwidth 
usage. Some significant improvement was obtained through 
disparity space compression. The disparity range was 
subsampled to lower the size of the cost volume. Starting from 
a fixed disparity (usually the middle of total disparity range) 
and up, the costs were computed in steps of two or four. The 
images were not sub-sampled. This affects only close-range 
reconstruction. Consequently, the algorithm runs a 
compressed cost volume, however final disparities need to be 
remapped to original range. Furthermore, the images were 
divided in several horizontal stripes and the cost volume was 
generated in parallel for each stripe. To minimize degradation 
suffered in the scanline accumulation step each stripe was 
added a small sized upper and lower border, not counted in the 
final cost volume. Having costs represented on 16 bits it was 
possible to compute (6) for eight disparities in parallel. 
Regarding the accumulation in (7) a number of eight scanlines 
were accounted. Inspired by [57] parallel scanline 
computation was considered without much success for 
speedup. Therefore the image was initially scanned from top-
left to bottom-right to accumulate four of the scanlines. In a 
subsequent backwards image scan the rest of the scanlines 
were added. The minimum cost computation for disparity 
selection was optimized by computing the minimum for eight 
positions at once using PHMINPOSUW instruction from 
SSE4. A second minimum was computed to invalidate a weak 
disparity when necessary. The same cost volume was used 
when computing the disparity image from left to right and 
right to left. Disparities were extracted at sub-pixel level using 
symmetric-V interpolation (9). They were further refined 
using median filtering and validated with left-right check. The 
algorithm tested on a high performance CPU family (Intel 
Core i7 i7-4960HQ) at 47 W maximum power consumption 
reached 14 fps on 640x480 images with 128 disparities and 
two step compression for the upper half range. An 
improvement of 2.1 fps was achieved when using four step 
disparity compression. Without compression the cycle per 
frame was 84 ms (11.9 fps). 

Recent efforts were concentrated around neural network 
implementations. SGM was improved in [25] by having costs 
computed with a fast CNN. The cost volume was optimized 
on four scanlines and penalties were adjusted based on image 
gradient. Disparities were extracted at minimum cost. Sub-
pixel accuracy was achieved using parabola interpolation (8) 
and was further refined with median and bilateral filters. The 
implementation on one of the latest class GPU (nVidia Titan 
X) achieved around 16.6 fps for 320x240 images and 32 
disparities. For 1240x376 images with 228 disparities the 
performance decreased to 1.25 fps. 

When analyzing a vast time frame from the past the race 
for efficient power consumption was clearly won on FPGA 
side until recent launch of GPU devices targeting the mobile 
and automotive market.  The implementation in [62] proposed 
a highly parallel scheme for SGM with Center-Symmetric 
Census Transform optimized for nVidia Tegra X1 GPU. 

According to vendor specifications the average Thermal 
Design Power (TDP) is 10 W. Taking advantage of the shared 
memory capabilities it was adopted a 2D-tiled parallel scheme 
to generate bit streams associated to a dense 9x7 Census mask. 
The costs computed with Hamming Distance were 
parallelized on 1D tiles. The optimization of cost volume 
according to (6) was separately optimized for each scanline. 
Penalty 𝑃𝑃2  was set constant. The aggregation (7) took place 
during the last scanline optimization along with minimum cost 
search for disparity estimation. The only post-processing step 
consisted in median filtering, while sub-pixel interpolation 
and left-right consistency check were missing. For 640x480 
images and 128 disparities the implementation with eight cost 
optimization scanlines was running at 19 fps. Real-time was 
achieved (42 fps) when optimizing on four scanlines. A 
recommended 8-scanline implementation was possible within 
real-time frame only on the higher class nVidia Titan X GPU, 
running at 237 fps, with a power consumption of 250 W. 

 
TABLE I.  PERFORMANCE BY THE NUMBER OF CYCLES WHEN 

GENERATING 640X512X128 DISPARITY MAPS 

Cycles Speed 
[fps] 

PDS 
[x106] 

Power 
[W] 

PDS/Watt  
[x106] 

1 84 3541.3 4.468 792.6 
2 82 3419.7 3.705 923 
4 60 2521.5 3.409 739.7 
8 39 1653.1 3.306 500 
16 23 978.9 3.315 295.3 

 
Our solution designed for FPGA [63] represents a pipeline 

architecture for local block matching. We proposed an original 
hardware cost optimization technique based on accumulating 
costs aggregated on columns of support window. Also, an 
original multiple cycle approach is adopted for further 
optimization of the cost volume computation unit (Fig. 2). The 
fractional precision is computed with the LUT-based method 
proposed in [64]. It is integrated in the pipeline using a fast and 
cost effective implementation that allocates only one internal 
memory unit (BlockRAM). The architecture running both 
image rectification and matching has achieved 82 fps for a two 
cycle customization providing 640x512x128 disparity maps. In 
this configuration the power dissipation was 3.7 W. TABLE I 

 

 

Fig. 2 Impact of the proposed optimizations on the Cost Volume 
Computation unit – internal running frequency is stable despite 

hardware reduction. 

0
5000

10000
15000
20000
25000
30000
35000

16 32 48 64 80 96

FP
G

A 
Sl

ic
es

Disparities

0
100
200
300
400
500

16 32 48 64 80 96

FP
G

A 
Fr

eq
ue

nc
y 

(M
Hz

)

Disparities
1cycle(no Acc) 1cycle(w/ Acc) 2cycles(w/ Acc)

4cycles(w/ Acc) 8cycles(w/ Acc)

20 AUTOMATION COMPUTERS APPLIED MATHEMATICS, VOL. 27, No. 1, 2018



shows the results for implementing other single cycle and 
multiple cycle configurations. The PDS coefficient represents 
the number of pixels multiplied by the number of disparities 
computed per second. It is the result of multiplying the speed 
with the image resolution and with the disparity range, in order 
to measures the computational capability. TABLE II shows our 
2-cycle implementation is second in computational 
performance and third in energy efficiency. 

C. Comparative remarks 
The amount of circuitry dedicated to high scale 

parallelization and pipelining, seconded by top classification in 
power efficient devices, makes the FPGA one of the most 
attractive solutions for hardware acceleration at the edge. We 
adopted this class of hardware to accelerate the 
computationally intensive image matching task for which 
rectification is a mandatory preprocessing step. 

Image rectification solutions, adopting computation of the 
correspondences on-the-fly, require floating point arithmetical 
units to implement the complex equations.  The mapping can 
be forward or inverse. The precision has to be carefully 
established, if the paired locations need sub-pixel 
approximation. For simplification and economy of allocated 
hardware, we decided to have the mapping computed offline 
and keep the paired image locations in a LUT that is stored into 
local memory at initialization. Given the necessary size, the 
memory is allocated on SRAM chips outside the FPGA. 

When implementing rectification with sub-pixel location 
the forward mapping requires larger buffers to store the 
neighborhood for interpolation. Instead, the proposed solution 
implements inverse mapping, hence supplemental buffers are 
not needed because the interpolated pixels are always adjacent 
at known locations. However, an original caching technique is 
implemented to reduce the access to the memory storing the 
input images. 

Solutions applying forward mapping had to remove 
fractional precision, in order to allow LUT compression that 
can fit the small memory distributed inside the FPGA. A one-
to-one mapping may encounter gaps between pixels. With 
inverse mapping the gaps are eliminated, the precision is 
maintained and the image is completely rectified. 

The reduction of the LUT size with down-sampling, 
followed by up-sampling of the rectified image to original 
resolution, encounters information loss. We use down-
sampling only when the disparity map should be computed for 
lower resolutions, without further up-sampling. 

There are implementations which separate rectification 
from undistortion, in distinct computations, hence they use 
additional hardware while increasing the latency. The 
rectification model we proposed can combine several 
preprocessing operations into a unique image warping. 

Image matching encounters many implementations, which 
follow the algorithmic details characterizing different local or 
semi-global solutions. Not only they approach different classes 

TABLE II.  STEREO MATCHING SOLUTIONS IMPLEMENTED WITH SPECIALIZED HARDWARE (OUR SOLUTION IN LAST ROW) 

Reference Matching technique Hardware platform (Image size) x 
Disparities 

Speed 
[fps] 

PDS 
[x106] 

PDS / 
Watt 
[x106] 

Kanade et al. [41] local with SAD C40 DSP array, ROM, RAM, ALU (200x200)x30 30 30 N/A 
Woodfill et al. [42] local with Census 16 x Xilinx 4025 FPGA (320x240)x24 42 77.4 3.44 

Konolige [43] local with SAD ADSP2181 DSP module (160x120)x32 6 3.7 6.14 
Woodfill et al. [44] 
Woodfill et al. [45] 

local with Census 
local with Census 

ASIC 
ASIC, FPGA, PowerPC (512x480)x52 200 2555.9 2555.9 

Jia et al. [46] local with SAD Xilinx XC2V2000 FPGA (640*480)x64 30 589.8 N/A 
Masrani et al. [47] local with hierarchical LWPC 4 x Altera Stratix S80 FPGA (640*480)x128 30 330 660 

Rosenberg et al. [53] SGM with Absolute 
Difference nVidia GeForce 7900 GTX GPU (320x240)x64 

(160x120)x32 
8 
13 

39.3 
7.99 

0.47 
0.1 

Sabihuddin et al. 
[49] 

global with Squared 
Difference FGPA (512x512)x16 36.3 152.4 N/A 

Sabihuddin et al. 
[51] 

global with Squared 
Difference FPGA (640x480)x128 64 2516.6 N/A 

Gibson et al. [55] SGM with sampling-
insensitive nVidia Quadro FX 5600 GPU (450x375)x64 5.9 63.7 0.37 

Ernst et al. [52] hierarchical SGM with 
Mutual Information nVidia GeForce 8800 ULTRA GPU (640x480)x128 

(320x240)x64 
4.2 
13 

188.7 
73 

1.08 
0.42 

Gehrig et al. [56] SGM with ZSAD Xilinx Spartan-3a 3400DSP FPGA (680x400)x128 25 217.6 72.53 

Gehrig et al. [57] - SGM with Census 
- hierarchical SGM Intel Core i7-975ex CPU (640x320)x128 

(640x320)x128 
4.5 
14.5 

117 
65.3 

0.9 
0.5 

Haller et al. [58]  SGM with Census nVidia GeForce GTX-280 GPU (512x383)x56 52.6 577.6 2.45 
Banz et al. [27] SGM with Rank Transform Xilinx Virtex 5 FPGA (640x480)x128 37 1454.9 1454.9 
Banz et al. [28] SGM with Rank Transform nVidia Tesla C2050 GPU (1024x768)x128 27.8 2798.4 11.76 

Pantilie et al. [29] 
Pantilie et al. [18] SGM with Census nVidia GeForce GTX-480 GPU (512x383)x56 91 999.3 4 

Buder [60] SGM with Census 
Xilinx Virtex 5 FPGA 
Xilinx Virtex 5 FPGA 

Spartan 6 LX150 FPGA 

(640x480)x64 
(1024x1024)x64 

(512x512)x64 

33 
10 
25 

648.8 
671.1 
419.4 

648.08 
671.08 
838.86 

Michael et al. [59] SGM with Absolute 
Difference nVidia GeForce GTX-480 GPU (640x480)x64 11.7 230 0.92 

Spangenberg et al. 
[61] 

SGM with Center-Symmetric 
Census Intel Core i7 i7-4960HQ CPU (640x480)x128 16.1 396.4 8.43 

Zbontar et al. [25] SGM with CNN nVidia Titan X GPU (320x240)x32 
(1240x376)x228 

16.7 
1.25 

41 
132.9 

0.16 
0.53 

Juarez et al. [62] SGM with Center-Symmetric 
Census 

nVidia Tegra X1 GPU 
nVidia Titan X GPU (640x480)x128 19 

237 
747.1 

9319.2 
74.71 
37.28 

Vancea et al. [63] local block matching Xilinx Virtex 4 FPGA (640x512)x128 82 3419.7 923 
 

VANCEA et al.: IMAGE RECTIFICATION AND MATCHING SOLUTIONS OPTIMIZED FOR DEDICATED HARDWARE ACCELERATORS 21



of algorithms, but they also entail different customizations 
within the same class. The differences are related to 
algorithmic issues concerning the cost function, the cost 
aggregation, the refinement techniques, the disparity 
resolution, the number of optimization paths or the number of 
stripes being processed in parallel. Apart from these 
algorithmic details, we propose optimization strategies for 
pipelining, capable to reduce hardware costs without affecting 
the clock rate at runtime (Fig. 2). In our exemplification, the 
optimizations are applied for a local block matching algorithm.  

According to TABLE II it can be noticed a strong 
preference towards implementation on GPU and FPGA 
platforms, the latter being capable of real-time performance 
with suitable power efficiency for integration into mobile and 
embedded devices. There are several low-level aspects that 
must be considered when designing with FPGAs: area 
utilization measured by allocated FPGA logic, maintenance of 
critical path length to allow high running frequency, balance 
between memory usage and bandwidth. While concentrating 
on parallelization and pipelining at higher level most solutions 
do not offer low level details for the architecture they propose. 
Low level optimization requires strong knowledge of the 
underlying hardware support and fine details for efficient 
synthesizing, planning, routing and resource mapping. 

IV. CONCLUSIONS 
We have analyzed the most common models and strategies 

used for image rectification and image matching. The 
advantages and disadvantages have been presented for each 
identified class. A thorough study over the last two decades 
demonstrate intensive preoccupation for real-time performance 
and low power consumption solutions. We conclude that the 
most appreciated platforms for optimization and hardware 
acceleration are represented by GPU and FPGA, with 
categorical advantage for FPGA, when the power consumption 
is an important factor. 

The analysis includes two pipeline architectures we 
proposed for image rectification and for image matching in 
FPGA. The image rectification model adopted is lossless and 
the implementation is capable to perform accurate image 
rectification in real-time. The access to the images stored in 
memory is reduced by incorporating an original caching 
technique. The optimization techniques we proposed for image 
matching decreased the hardware costs. The experiments 
demonstrate the efficiency of the proposed solution in matters 
of hardware utilization. Our architecture performs rectification 
and matching in real-time and registers one of the top scores in 
computational performance and energy efficiency. 

ACKNOWLEDGMENT 
This work has been supported by a grant of Romanian 

Ministry of Research and Innovation, CNCS - UEFISCDI, 
project number PN-III-P4-ID-PCE-2016-0727, within PNCDI 
III. 

REFERENCES 
 

[1] S. Nedevschi, R. Dănescu, T. Mariţa, F. Oniga, C. Pocol, S. Bota, C. 
Vancea, “A Sensor for Urban Driving Assistance Systems Based on 
Dense Stereovision”, Stereo Vision, Ch. 14, pp. 235-259, InTech, 
November 2008.  

[2] Available, 2018: http://www.xilinx.com/applications/automotive.html 
[3] Available, 2018: https://www.nvidia.com/en-us/self-driving-cars 
[4] Available, 2018: 

https://www.intel.com/content/www/us/en/automotive/products/progra
mmable/overview.html 

[5] C. Vancea, S. Nedevschi, “Analysis of different image rectification 
approaches for binocular stereovision systems”, Proceedings of IEEE 
2nd International Conference on Intelligent Computer Communication 
and Processing, vol. 1, pp. 135-142, September 2006. 

[6] A. Fusiello, E. Trucco, A. Verri, “A compact algorithm for rectification 
of stereo pairs”, Machine Vision and Applications, vol. 12, no. 1, pp. 
16-22, July 2000. 

[7] Z. Zhang, “A flexible new technique for camera calibration”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 
11, pp. 1330-1334, November 2000. 

[8] D. Scharstein, R. Szeliski, “A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms”, International Journal of 
Computer Vision, vol. 47, no. 1, pp. 7-42, April 2002. 

[9] O. Veksler, “Stereo correspondence by dynamic programming on a 
tree”, Proceedings of IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition (CVPR), vol. 2, pp. 384-390, June 2005. 

[10] J. Kim, V. Kolmogorov, R. Zabih, “Visual correspondence using energy 
minimization and mutual information”, Proceedings of 9th IEEE 
International Conference on Computer Vision, pp. 1033-1040, October 
2003. 

[11] M. Bleyer, M. Gelautz, “A layered stereo matching algorithm using 
image segmentation and global visibility constraints”, ISPRS Journal of 
Photogrammetry and Remote Sensing, vol. 59, no. 3, pp. 128-150, May 
2005. 

[12] G. Li, S. Zucker, “Stereo for slanted surfaces: First order disparities and 
normal consistency”, Proceedings of 5th International Workshop on 
Energy Minimization Methods in Computer Vision and Pattern 
Recognition, vol. 3757, pp. 617-632, November 2005. 

[13] M. Bleyer, C. Rhemann, C. Rother, “PatchMatch Stereo-Stereo 
Matching with Slanted Support Windows”, Proceedings of the British 
Machine Vision Conference, vol. 11, pp. 1-11, September 2011. 

[14] S. Nedevschi, R. Dănescu, D. Frenţiu, T. Mariţa, F. Oniga, C. Pocol, R. 
Schmidt, T. Graf, “High Accuracy Stereo Vision System for Far 
Distance Obstacle Detection”, Proceedings of 2004 IEEE Intelligent 
Vehicles Symposium,  pp. 292-297, June 2004. 

[15] M. P. Mureşan, S. Nedevschi, R. Dănescu, “Patch warping and local 
constraints for improved block matching stereo correspondence”, 
Proceedings of IEEE 12th International Conference on Intelligent 
Communication and Processing (ICCP), pp. 321-327, September 2016. 

[16] M. P. Mureşan, M. Negru, S. Nedevschi, “Improving local stereo 
algorithms using binary shifted windows, fusion and smoothness 
constraint”, Proceedings of IEEE 11th International Conference on 
Intelligent Computer Communication and Processing (ICCP), pp. 179-
185, September 2015. 

[17] N. Einecke, J. Eggert, “A multi-block-matching approach for stereo”, 
Proceedings of IEEE Intelligent Vehicles Symposium, pp. 585-592, 
June 2015. 

[18] C. Pantilie, S. Nedevschi, “SORT-SGM: Subpixel optimized real-time 
semiglobal matching for intelligent vehicles”, IEEE Transactions on 
Vehicular Technology, vol. 61, no. 3, pp. 1032-1042, March 2012. 

[19] I. Haller, C. Pantilie, F. Oniga, S. Nedevschi, “Real-time semi-global 
dense stereo solution with improved sub-pixel accuracy”, Proceedings 
of 2010 IEEE Intelligent Vehicles Symposium (IV), pp. 369-376, June 
2010. 

[20] H. Hirschmüller, “Stereo processing by semiglobal matching and 
mutual information”, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 30, no. 2, pp. 328-341, February 2008. 

[21] H. Hirschmüller, “Accurate and efficient stereo processing by semi-
global matching and mutual information”, Proceedings of IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition (CVPR), vol. 2, pp. 807-814, June 2005. 

[22] S. Hermann, R. Klette, E. Destefanis, “Inclusion of a second-order prior 
into semi-global matching”, Advances in Image and Video Technology, 
pp.  633-644, January 2009. 

[23] R. Spangenberg, T. Langner, R. Rojas, “Weighted semi-global matching 
and center-symmetric census transform for robust driver assistance”, 
Proceeding of 15th International Conference on Computer Analysis of 
Images and Patterns, pp. 34-41, August 2013. 

[24] J. Zbontar, Y. LeCun, “Computing the stereo matching cost with a 
convolutional neural network”, Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 1592-1599, June 
2015.  

[25] J. Zbontar, Y. LeCun, “Stereo matching by training a convolutional 
neural network to compare image patches”, Journal of Machine 
Learning Research, vol. 17, no. 1, pp: 2287-2318, January 2016. 

22 AUTOMATION COMPUTERS APPLIED MATHEMATICS, VOL. 27, No. 1, 2018



[26] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. 
Bachrach, A. Bry, “End-to-End Learning of Geometry and Context for 
Deep Stereo Regression”, Proceedings of IEEE International 
Conference on Computer Vision (ICCV), pp. 66-75, October 2017. 

[27] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, P. Pirsch, “Real-time stereo 
vision system using semi-global matching disparity estimation: 
Architecture and FPGA-implementation”, Proceedings of 2010 
International Conference on Embedded Computer Systems (SAMOS) , 
pp. 93-101, July 2010.  

[28] C. Banz, H. Blume, P. Pirsch, “Real-time semi-global matching 
disparity estimation on the GPU”, Proceedings of 2011 IEEE 
International Conference on Computer Vision (ICCV) Workshops, pp. 
514-521, November 2011. 

[29] C. Pantilie, I. Haller, M. Drulea, S. Nedevschi, “Real-time image 
rectification and stereo reconstruction system on the GPU”, Proceedings 
of 10th International Symposium on Parallel and Distributed Computing 
(ISPDC), pp. 79-85, December 2011. 

[30] M. Pohl, M. Schaeferling, G. Kiefer, P. Petrow, E. Woitzel, F. Papenfuß, 
“An efficient and scalable architecture for real-time distortion removal 
and rectification of live camera images”, Proceedings of 2012 
International Conference on Reconfigurable Computing and FPGAs 
(ReConFig), pp. 1-7, December 2012. 

[31] P. Zicari, “Efficient and high performance FPGA-based rectification 
architecture for stereo vision”, Microprocessors and Microsystems, vol. 
37, no. 8, pp. 1144-1154, November 2013. 

[32] P. P. Shete, D. M. Sarode, S. K. Bose, “A real-time stereo rectification 
of high definition image stream using GPU”, Proceedings of 2014 
International Conference on Advances in Computing, Communications 
and Informatics (ICACCI) , pp. 158-162, September 2014. 

[33] A. Akin, I. Baz, L. M. Gaemperle, A. Schmid, Y. Leblebici, 
“Compressed look-up-table based real-time rectification hardware”, 
Proceeding of IFIP/IEEE 21st International Conference on Very Large 
Scale Integration (VLSI-SoC), pp. 272-277, October 2013. 

[34] A. Akin, L. M. Gaemperle, H. Najibi, A. Schmid, Y. Leblebici, 
“Enhanced Compressed Look-up-Table Based Real-Time Rectification 
Hardware”, In IFIP Advances in Information and Communication 
Technology, vol. 461 (VLSI-SoC: At the Crossroads of Emerging 
Trends), pp. 227-248, Springer Cham, November 2015. 

[35] S. N. Hung, J. Lee, B.J. You, “Real-time stereo rectification using 
compressed look-up table with variable breakpoint indexing”, 
Proceedings of IECON 2016-42nd Annual Conference of the IEEE 
Industrial Electronics Society, pp. 4814-4819, October 2016. 

[36] D. Han , J. Choi, S. J. Yoo, S. W. Baik, H. C. Shin, “The Design of HD 
Image Rectification Architecture Using Floating Point IP”, Proceeding 
of 2013 International Conference on Future Software Engineering and 
Multimedia Engineering (ICFM), IERI Procedia, vol. 6, pp. 39-44, 
2014. 

[37] J. H. Kim, J. G. Kim, J. K. Oh, S. M. Kang, J. D. Cho, “Efficient 
Hardware Implementation of Real-time Rectification using Adaptively 
Compressed LUT”, Journal of Semiconductor Technology and Science, 
vol. 16, no. 1, pp. 44-57, February 2016. 

[38] D. Huffman, “A method for the construction of minimum-redundancy 
codes”, Proceedings of the IRE 40, no. 9, pp. 1098-1101, September 
1952. 

[39] P. Di Febbo, S. Mattoccia, C. Dal Mutto, “Real-time image distortion 
correction: Analysis and evaluation of FPGA-compatible algorithms”, 
Proceedings of 2016 International Conference on ReConFigurable 
Computing and FPGAs (ReConFig), pp. 1-6, December 2016. 

[40] C. Vancea, S. Nedevschi, “LUT-based image rectification module 
implemented in FPGA”, Proceedings of IEEE 3rd International 
Conference on Intelligent Computer Communication and Processing 
(ICCP), pp. 147-154, September 2007. 

[41] T. Kanade, A. Yoshida, K. Oda, H. Kano, M. Tanaka, “A stereo machine 
for video-rate dense depth mapping and its new applications”, 
Proceedings of IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 196-202, June 1996. 

[42] J. Woodfill, B. Von Herzen, “Real-time stereo vision on the PARTS 
reconfigurable computer”, Proceedings of the 5th Annual IEEE 
Symposium on Field-Programmable Custom Computing Machines, pp. 
201-210, April 1997. 

[43] K. Konolige, “Small vision systems: Hardware and implementation”, In 
Robotics research, pp. 203-212, Springer London, 1998. 

[44] J. I. Woodfill, G. Gordon, R. Buck, “Tyzx DeepSea high speed stereo 
vision system”, Proceedings of the 2004 IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition Workshop 
(CVPRW), pp. 41-45, June 2004. 

[45] J. I. Woodfill, G. Gordon, D. Jurasek, T. Brown, R. Buck, “The Tyzx 
DeepSea G2 Vision System, A Taskable, Embedded Stereo Camera”, 
Proceedings of Conference on Computer Vision and Pattern 
Recognition Workshop (CVPRW), pp. 126-132, June 2006. 

[46] Y. Jia, X. Zhang, M. Li, L. An, “A miniature stereo vision machine 
(MSVM-III) for dense disparity mapping”, Proceedings of the 17th 
International Conference on Pattern Recognition (ICPR), vol. 1, pp. 
728-731, August 2004. 

[47] D. Masrani, W. J. MacLean, “A real-time large disparity range stereo-
system using FPGAs”, Proceedings of IEEE International Conference 
on Computer Vision Systems (ICVS), pp. 13-13, January 2006. 

[48] D. Fleet, “Disparity from local weighted phase-correlation”, IEEE 
International Conference on Systems, Man, and Cybernetics, 1994. 
Humans, Information and Technology, vol. 1, pp. 48-54, October 1994. 

[49] S. Sabihuddin, W. J. MacLean, “Maximum-likelihood stereo 
correspondence using field programmable gate arrays”, Proceedings of 
the 5th International Conference on Computer Vision Systems (ICVS), 
March 2007. 

[50] I. Cox, S. Hingorani, S. Rao, B. Maggs, “A maximum likelihood stereo 
algorithm”, Computer Vision and Image Understanding, vol. 63, no. 3, 
pp. 542-567, May 1996. 

[51] S. Sabihuddin, J. Islam, W. J. MacLean, “Dynamic programming 
approach to high frame-rate stereo correspondence: A pipelined 
architecture implemented on a field programmable gate array”, 
Proceedings of Canadian Conference on Electrical and Computer 
Engineering (CCECE) 2008, pp. 001461-001466, May 2008. 

[52] I. Ernst, H. Hirschmüller, “Mutual information based semi-global stereo 
matching on the GPU”, Proceedings of the 4th International Symposium 
on Advances in Visual Computing, pp. 228-239, December 2008. 

[53] I. Rosenberg, P. Davidson, C. Muller, J. Han, “Real-time stereo vision 
using semi-global matching on programmable graphics hardware”, 
Proceedings of 33rd International Conference and Exhibition on 
Computer Graphics and Interactive Techniques – ACM SIGGRAPH 
2006 Sketches, Article no. 89, August 2006. 

[54] S. Birchfield, C. Tomasi, “Depth discontinuities by pixel-to-pixel 
stereo”, International Journal of Computer Vision, vol. 35, no. 3, pp. 
269-293, December 1999. 

[55] J. Gibson, O. Marques, “Stereo depth with a unified architecture GPU”, 
Proceedings of  Computer Society Conference on Computer Vision and 
Pattern Recognition Workshops (CVPRW), pp. 1-6, June 2008. 

[56] S. Gehrig, F. Eberli, T. Meyer, “A real-time low-power stereo vision 
engine using semi-global matching”, Proceedings of International 
Conference on Computer Vision Systems, pp. 134-143, October 2009. 

[57] S. Gehrig, C. Rabe, “Real-time semi-global matching on the CPU”, 
Proceedings of 2010 Computer Society Conference on Computer Vision 
and Pattern Recognition Workshops (CVPRW), pp. 85-92, June 2010. 

[58] I. Haller, S. Nedevschi, “GPU optimization of the SGM stereo 
algorithm”, Proceedings of International Conference on Intelligent 
Computer Communication and Processing, pp. 197-202, August 2010. 

[59] M. Michael, J. Salmen, J. Stallkamp, M. Schlipsing, “Real-time stereo 
vision: Optimizing semi-global matching”, Proceedings of IEEE 
Intelligent Vehicles Symposium (IV), pp. 1197-1202, June 2013. 

[60] M. Buder, “Dense realtime stereo matching using a memory efficient 
Semi-Global-Matching variant based on FPGAs”, Proceedings of Real-
Time Hardware, May 2012. 

[61] R. Spangenberg, T. Langner, S. Adfeldt, R. Rojas, ”Large scale Semi-
Global Matching on the CPU”, Proceedings of 2014 IEEE Intelligent 
Vehicles Symposium, pp. 195-201, June 2014. 

[62] D. H.-Juarez, A. Chacón, A. Espinosa, D. Vázquez, J. C. Moure, A. 
López, “Embedded real-time stereo estimation via Semi-Global 
Matching on the GPU”, Proceedings of International Conference on 
Computational Science (ICCS), Procedia Computer Science, vol. 80, 
pp. 143-153, June 2016. 

[63] C.-C. Vancea, S. Nedevshi, “FPGA-based stereo vision hardware for 
generating dense disparity maps”, Proceedings of IEEE 12th 
International Conference on Intelligent Communication and Processing 
(ICCP), pp. 225-232, September 2016. 

[64] C.-C. Vancea, V.-C. Miclea, S. Nedevschi, “Improving stereo 
reconstruction by sub-pixel correction using histogram matching”, 
Proceedings of 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 
335-341, June 2016. 

VANCEA et al.: IMAGE RECTIFICATION AND MATCHING SOLUTIONS OPTIMIZED FOR DEDICATED HARDWARE ACCELERATORS 23


	I.  Introduction
	II. Standard methods for image rectification and matching
	A. Image rectification for calibrated systems
	B. Techniques for dense disparity computation

	III. Implementations optimized for hardware acceleration
	A. Hardware solutions for image rectification
	B. Image matching implementations with specialized hardware support
	C. Comparative remarks

	IV. Conclusions
	Acknowledgment
	References




