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Abstract— This paper introduces a stereo reconstruction
method that besides producing accurate results in real-time,
is capable to detect and conceal possible failures caused by one
of the cameras. A classification of stereo camera sensor faults
is initially introduced, the most common types of defects being
highlighted. We next present a stereo camera failure detection
method in which various additional checks are being intro-
duced, with respect to the aforementioned error classification.
Furthermore, we propose a novel error correction method based
on CNNs (convolutional neural networks) that is capable of
generating reliable disparity maps by using prior information
provided by semantic segmentation in conjunction with the last
available disparity. We highlight the efficiency of our approach
by evaluating its performance in various driving scenarios and
show that it produces accurate disparities on images from Kitti
stereo and raw datasets while running in real-time on a regular
GPU.

I. INTRODUCTION

Depth perception is a very important problem in au-
tonomous driving. Stereo reconstruction is the traditional
method for depth measurement providing very accurate so-
lutions at relatively low cost.

Stereo reconstruction algorithms have been traditionally
classified as being either local or global. Local methods
rely on a small support window over which a similarity
criterion is applied. On the other hand global methods
compute the disparity of all pixels in the image by optimizing
a global energy function. One of the most reliable stereo
methods is the Semi-Global Matching (SGM) [1]. SGM falls
in between local and global categories, ensuring close-to
global consistency while consuming a reasonable amount of
resources. The method approximates a 2D energy minimiza-
tion by several 1D optimizations. State of the art provides
various SGM implementations, on different platforms CPU
[2], GPU [3] or FPGA [4], most of them obtaining real-time
performances.

With the increased prosperity of deep learning, convolu-
tional neural networks have been lately used for computer
vision tasks such as depth computation. CNNs enable meth-
ods dealing with stereo cost computation [5], optimization
[6], post-processing [7], end-to-end stereo [8] [9], depth
upsampling [10] [11] or depth estimation from single image
[12].

Although stereo reconstruction is a well-studied problem,
most of the approaches in literature only concern with
producing higher accuracy percentages on disparity datasets
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such as Kitti [13] or Middlebury [14], few approaches con-
cerning about the robustness of the solution. Since sensors
in cameras are error-prone, an accurate solution that fails in
critical situations might be extremely expensive, especially
in the context of autonomous driving.

The inherent failures that have been met in practical usage
of stereo, in conjunction to the apparition of LiDAR (Light
Detection and Ranging), a more robust and trustworthy
sensor, lead to a decrease in usage of stereo. Although
extremely accurate for depth measurements, LiDAR has the
disadvantage of being more expensive and of giving sparse
results.

In order to overcome a part of the stereo shortcomings
we tackle here the problem of stereo reconstruction failure
detection and correction. We initially present a method that
detects the most common types of short-term failures in
stereo. Consequently, we modify the stereo pipeline such
that it also detects faults by adding several testing points.
Furthermore, we introduce a novel stereo camera error con-
cealment method that mitigates the error previously found,
producing an accurate depth map in real-time. Our method
uses deep learning techniques to compute a novel disparity
map by using depth information from previous frame as well
as semantic and RGB information from current frame.

The paper starts with presenting the state of the art in
stereo reconstruction and possible solutions to overcome
errors caused by camera sensors in the stereo context. It
continues with presenting the most relevant stereo failures,
several possible ways of detection and a modified traditional
stereo pipeline that incorporates these detection methods.
Section 4 introduces a novel disparity prediction method
based on convolutional neural networks (CNNs). In section
5 we present a thorough evaluation of our method and we
discuss the improvements given by our method in various
driving scenarios. Finally, we conclude the paper in section
6.

II. RELATED WORK
A. Classic Taxonomy for Stereo Reconstruction

Although lately state of the art benchmarks show that end-
to-end deep learning-based stereo methods such as [8] or [9]
produce the most accurate results, they need a large amount
of data for training and most of them can not run in real
time. Moreover, we are not 100% sure how such methods
behave when dealing with an unrecognizable situation, that
has not previously met in training. Therefore, we must rely
on traditional stereo taxonomy proposed by D. Scharstein
and R. Szeliski [14] that divides the stereo problem into four
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main phases – cost computation, aggregation, optimization,
refinement, each phase being responsible for solving a par-
ticular sub-problem.

Cost computation is generally computed by using a spe-
cific metric to find similarities between patches from left and
right images. Traditional metrics are either intensity-based –
SAD, SSD, NCC [15], non-parametric – Rank Transform,
Census Transform [16] or based on extracted features. These
can be either hand-crafted [17] [18] or learnable [5] [19] [20].

Aggregation generally is done by adding additional pixels
from a support window. Best solutions for this step usually
rely on accurate edge detection, object edges being used for
setting the aggregation window boundaries [21]. Aggregation
is followed by the optimization step, in which global con-
sistency of the disparity is assured. Methods such as SGM
[1], Graph Cuts [22] or Belief propagation [23] are used for
this step. Finally, a refinement of the disparity is performed,
generally by filtering with median [24], bilateral [25], guided
[26] or even learnable filters [7].

B. Missing frame recovery for stereo

One of the top methods dealing with error concealment
for frame misses in the context of stereo has been developed
by Chen et al. [27]. In this work the authors propose to infer
the missing right frame by considering the temporal change
detection (from two successive left images) and an estimation
of the disparity.

A different method that also recovers right image is
proposed by Chung et al. [28]. This method exploits motion
vectors of each available frame thus being able to conceal
each type of image error. Several other similar approaches
have been proposed in literature [29], [30], [31].

Instead of using methods that try to recover the missing
frames by classic concealment methods, we apply here a
different approach, in which we employ learning mechanisms
to generate the disparity map by using convolutional neural
networks.

III. STEREO CAMERA FAULT DETECTION

A. Problem formulation

Let IL(t) and IR(t) be two simultaneously captured im-
ages from a calibrated stereo system at time t. A traditional
stereo method can generate a disparity map ID(t), from
which a depth map can be easily computed. For the next
frame in temporal succession – at time t+1 – we assume that
image IR becomes either unavailable or incorrect. This could
be caused by various specific camera errors or by camera
decalibration. The main goal for this work is to overcome the
lack of information from second camera in order to generate
the disparity ID(t + 1) by using all available information.
This process is highlighted in Figure 1.

B. Stereo camera defects

The defects in digital imaging CMOS sensors depend
on many causes, such as the physical dimensions of the
pixel photosensitive area or the homogeneity of silicon. The
variations in the manufacturing process produces pixels with

IL(t) IR(t)

IL(t + 1) IR(t + 1)

ID(t)

ID(t + 1)

Fig. 1: Problem formulation for stereo error concealment;
ID(t+1) is computed by using relevant info from temporal
change in IL together with info from previous disparity ID

different physical dimensions. Also, the efficiency to convert
photons to electrons is given by the inhomogeneity naturally
present in silicon [32].

Because physical defects are obviously not numerable in
terms of type, location and time of occurrence, the testing
field deals with faults, which model the physical defects to
make the numerable, and thus tractable.

Techniques like FMEA (Failure Mode and Effects Anal-
ysis), RCA (Root Cause Analysis), and FTA (Fault Tree
Analysis) can be used to diagnose a system and to avoid
failures [33]. To be able to define the failure modes of a
stereo camera (SC), based on its proper operation, we used a
FMEA analysis. The failure modes lead to several categories
of failures effects. These will be discussed in the following
section, in conjunction with the pipeline shown in Figure 2.

FMEA method associates to each failure mode a risk level
(RPN Risk Priority Number), and decide the corrective
actions for the most severe issues. The application of FMEA
method for a SC request the following information: SC
component, function, failures, modes of failures, effects of
failures, causes of failures, occurrence of failures (OCC),
severity of failures (SEV), current control laws, detection of
failures (DET), and recommended actions [34]. We used a
10-point ratings of SEV, OCC and DET. A case study for the
FMEA analysis is presented in Table I, where three failure
types are considered.

C. Detection inserted in stereo pipeline

The main reason for choosing a stereo method that follows
the traditional stereo taxonomy is that intermediate results are
quantifiable and thus can be evaluated. This introduces the
possibility of detecting the faulty results after each step. The
workflow of our proposed method can be seen in Figure
2. Although we present here only the case in which the
right camera suffers a defect, the detection and concealment
methods are viable for the mirror case as well.

The main branch of the workflow uses the most robust
methods in each category, such that intermediate results are
accurate. A center-symmetric Census metric [16] is preferred
for cost computation, followed by cross-based cost aggrega-
tion [35], SGM optimization [1] and disparity refinement
using a median filter [24].
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TABLE I: Failure types for stereo camera – case study

Failures
FMEA information Fail1 Fail2 Fail3
Failure mode (FM) Right image missing Image not legible Image parts not legible
Failure effect (FE) All pixels are black Most of the pixels corrupted Image parts have been corrupted

SEV 7 5 3
Possible cause (PC) Hardware malfunction (thermal effect) Large decalibration Some pixels are faulty

OCC 3 5 7
Current control Detection using a mask Lens distortion correction Integrity verification (forgery det.)

DET 3 2 1
RPN 63 50 21

Det Solution Check using a mask Left-right consistency check Left-right consistency check

LeftImg

RightImg

Census

Census

Hamming Aggreg SGM

Semantic Seg
with CNN

Selection Refine DispImg

Recover?

LeftPrev

DispPrev

DispCorrection
with CNN

Fail1Det Fail2Det
Fail3Det

Fig. 2: Workflow of the Proposed Method

Three failing test points are added inside the main pipeline:

1) After image capturing – check if the image has been
acquired

2) After cost computation – check if most of the image
pixels have been corrupted

3) After optimization – check if several pixels have been
corrupted

The initial detection (Fail1Det) captures if the right
image is missing. This can be easily done by simply verifying
if all pixels in the image are black (eg by using a mask).

Following this initial test, cost computation step is per-
formed by using a non-parametric metric. Patches from left
and right images are transformed according to the Census
transform. Then, a Hamming distance is computed between
the two census-transformed patches:

Ccomp(p, d) = Ham(Tl(p,N(p)), Tr(p− d,N(p− d)))
(1)

where Ham is the Hamming distance, T is the Census
Transform of the image patch centered in p and N(p) is
the chosen neighborhood.

Once the cost computation has been performed, the second
type of faults can be detected (Fail2Det). A testing point
is inserted to find if most of the pixels in the right image
have been corrupted. This can happen due to possible camera
decalibrations caused by vibrations. A left-right consistency
check is applied over the cost volume. Therefore, we check
the left-view disparity map to be equal to the projected right-
view disparity map:

dLR(x, y) = dRL(x+ dLR(x, y), y) (2)

where dLR and dRL are two intermediate disparity maps,
generated from the initial cost volume (after cost computa-
tion). If the number of unreliable points inside the disparity
generated after the initial LR check is under a threshold
(exhaustive testing showed that this should be set to 20%),
then an error flag is generated.

Finally, the third detection (Fail3Det) is done after the
optimization step. This step checks if an error of the third
type has occurred (parts of the image have been corrupted).
The check is done similarly with the second one (using the
left-right check over the cost volume), but we use a different
error threshold (set to 75%).

If none of the errors have occurred, we perform the se-
lection and refinement according to the main stereo method.
Otherwise, we activate the error mitigation branch by acti-
vating the CNN.

IV. STEREO FAILURE MITIGATION

A. Semantic information as reliable information

In order to increase the reliability by using object infro-
mation, we initially compute a semantic segmentation of
the scene. Classic segmentation methods have been used in
correlation with depth computation [36] [37], generally being
used as a stereo post-processing [38]. With the introduction
of deep neural networks a boost in semantic segmentation
has lately appeard. Cityscapes dataset [39] enables methods
such as [40], [41] or [42] to accurately generate semantic
labels at pixel level.
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One of the top approaches in semantic segmentation is Erf-
NET [43]. The method uses an encoder-decoder architecture,
with 23 layer blocks, providing one of the best trade-offs in
terms of accuracy (69.7 for IoU) vs speed (around 25 ms).
The robustness is especially given by their novel layer block
that uses residual connections and factorized convolutions
for preserving the structure in the image and also reducing
computational costs. The method classifies the scene into 19
foreground and background classes.

B. CNN Architecture for disparity restoration

For the learning-based disparity generation we employ a 4-
input ConvNet architecture (Fig. 3). The method follows the
principles of the DeepJoint filter proposed by [7], a method
initially introduced in the context of image upsampling.

Our CNN architecture consists in several sub-networks,
each being responsible for solving a particular sub-
problem. Each sub-network consists of three residual Non-
bottleneck1D blocks, followed by a Batch Normalization
layer. The first block contains 64 feature maps, the second
128, while the third produces just one feature map, that
incorporates the most relevant features extracted from each
branch. Each convolution layer is designed according to the
speed-up techniques presented in [43]. A Non-Bottleneck1D
(Fig. 4) block is therefore shaped by:

• Residual connections – important information extracted
from initial layers is preserved throughout the entire
network so that later layers can benefit from it;

• 2D convolution layers approximated by two 1D convo-
lutions – this trick reduces the number of convolution
weights by more than a half while preserving stability
and accuracy;

• ReLU (Rectified Linear Unit) activations are inserted
after each convolution; these are used to zero the
gradients of negative input values.

The first two sub-networks are have similar roles, each
of them extracting reliable information from previous and
current left frame. This part has the role of extracting reliable
features from two temporally successive RGB images from
left camera. Two 41x41 patches from the are the inputs
to these branches. The output of these branches are con-
catenated to the following sub-network, which has the role
of extracting possible temporal differences between these
successive frames.

Besides this temporal information extraction we add a sub-
network that extracts relevant depth information. The input
of this sub-network comes from the last reliable disparity
(given by the last frame with information available from right
image).

Exhaustive testing showed us that RGB features from
current left image can not provide effective guidance. This
problem is mainly caused by the mixture of information
RGB maps carry. Although first sub-network tends to extract
more effective features and provides relevant information, we
consider useful to aid the process with an additional term.
Therefore results of the temporal and depth branches are also

concatenated with a semantic patch extracted from the seg-
mentation image. The semantic segmentation map contains
information about object boundaries, linking together similar
structures.

The last part of the network consists in two additional
Non-Bottleneck-1D blocks, interleaved by a layer of 1x1
convolutions. The role of the final sub-network is to simulate
a non-linear regression, joining together the three maps
thus inferring the final depth image. In this way we will
integrate the knowledge extracted from the three aforemen-
tioned feature maps. In terms of loss function, a pixel-wise
mean squared error (MSE, or L2) is computed between the
resulting depth patch and a ground truth, thus estimating the
degree of convergence for our method. Other losses could
have been used for this problem (such as L1 or the semi-
supervised loss described in [44]), but our network seemed
to converge fine with MSE, without any additional overhead.

C. Parameters and Training Details

Extracted training patches are normalized by subtracting
the mean and dividing with the maximum image intensity.
Similar learning rates have been given to all input branches.
Experimental testing showed that our network converged
only when the segmentation learning rate was set to 1/5 of
the learning rate for RGB, so we modified it accordingly. In
other scenarios segmentation features became too powerful,
and other information was dropped. We experimented with
two optimization methods: Stochastic Gradient Descent and
Adaptive Moment Estimation (Adam). Adam seemed to
properly control the learning so we chose it as our optimizer.

The network has been trained for 400 epochs, with batch
sizes of 128, the learning rate being decreased with a factor
of 0.1 at each 100 epochs.

V. EVALUATION

A. Dataset generation

Since we use supervised machine learning techniques
for optimization, a reliable dataset is required. The main
prerequisites for our training set are:

1) RGB images for semantic segmentation with driving
scenarios

2) depth image acquired either from stereo (need left and
right images)

3) left and right images captured in two consecutive
frames, for temporal information and ground truth
generation

Kitti 2015 stereo dataset [45] is the the most adequate
choice for our task, meeting all our needs: it contains both
left and right images in two consecutive frames thus making
us able to generate images for real-life driving scenarios.
The second pair of images are used for the ground truth
disparity computation. For CNN input, we extract 41 × 41
patches at various positions and randomly shuffled such
that we generate around 60.000 patches from 90% of the
training subset, with RGB, semantic information, left and
right images for frame t (for disparity) and left images for
frame t+ 1. These images have been further separated into
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Fig. 3: Architecture of the Proposed Disparity Generation Method
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Fig. 4: Non-bottleneck1D block having a receptive field size
of 5x5

training (80%) and validation (20%). The CNN is trained by
using the Torch7 framework, on a Nvidia GTX 1080 GPU.
In terms of segmentation, ERF-Net has been intially trained
on the Cityscapes dataset [39]. Semantic patches are then
obtained by normalizing the results according to the mean
and standard deviation of Kitti images.

B. Accuracy of Disparity recovery

1) Method Accuracy: In order to properly test the ef-
ficiency of our CNN-based disparity recovery, we test the
results obtained with our architecture with respect to several
other counterparts. Since to the best of our knowledge there
is no benchmark for this task (or any publicly available
implementations that have similar objectives), we stress our
CNN architecture such that it can be properly compared with
the following methods:

• The CNN without the LeftPrev sub-network. Therefore,
no temporal information is extracted in this case;

• The CNN without any prior disparity information. In
this case there is no information about the last depth
structure

• The CNN without semantic information. There is no
information about boundaries, nor about object types.

We have trained all these methods for multiple epochs, using
the same loss (MSE) as in our initial architecture. The error
metric for evaluation is the number of mismatched pixels
with respect to the ground truth (disparity given by a regular
stereo), with a threshold error of 3 pixels. We used the
other 20% of Kitti images, that have not been considered
for training or evaluation.

A first observation is that the most important information
for the architecture is the previous disparity map. Without
this prior, the CNN behaves poorly. Both temporal and
semantic information add an additional knowledge, the pro-
posed architecture obtaining an overall error of 6.42% with
respect to the original disparity. However, part of this error
is caused by the stereo method itself, since the disparity also
suffers from errors that can mislead the CNN. Numerical
results are presented in Table II. Visual results can be seen
in Figure 5. In this figure are presented all images that
are contributing to the proposed pipeline: left current and
previous image (Fig. 5a and 5d), disparity of the previous
image 5b, semantic segmentation of the current image 5c
and also the ground truth consisting in the disparity image
without faults 5e. The disparity that has been inferred by
using our method is presented in 5f.
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(a) Left – Previous Image (b) Disparity – Previous Image (c) Semantic Segmentation – Current Image

(d) Left – Current Image (e) Ground Truth Disparity Image (f) Inferred Disparity Image using proposed
solution

Fig. 5: Disparity maps obtained with our concealment method

TABLE II: Performance of various correction architectures
for Kitti stereo images

Method Accuracy Speed
Without temporal info 11.36% 11 ms
Without old disparity 19.03% 14 ms
Without semantic info 9.74% 15 ms
Proposed architecture 6.42% 17 ms

TABLE III: Accuracy of the disparity when changing the
base stereo method

Method Error (regular) Error (concealed)
OCV-BM 30.89% 35.12%

OCV-SGBM 14.75% 19.23%
MC-CNN fast 3.79% 7.17%
MC-CNN acrt 3.03% 6.64%

Proposed 10.19% 15.22%

2) Stereo method variation: We are also interested to see
how our CNN method behaves when the underlying stereo
method is changed. We chose the following stereo methods
as possible variations for the basic stereo pipeline: Block
Matching (BM) and Semi-Global Block Matching (SGBM)
from OpenCV, MC-CNN fast, MC-CNN accurate from [5]
and our method with Census+Aggregation+SGM+Median
filter. For this evaluation we compare the stereo results
with respect to the regular stereo Kitti ground truth (LiDAR
points, accumulated from multiple frames).

The results obtained in this case can be seen in Table III. It
can be seen that all these methods can be used as underlying
stereo for our method, the error constantly increasing, re-
gardless of the type of cost computation/optimization method
used in stereo. Nevertheless, very accurate stereo methods
have a smaller error increase (about 2%), mostly because all
information passed to the CNN is consistent (eg. semantic
with depth), and thus the CNN can better understand the
image structure. All in all, our concealment CNN-based
method can be used with any type of stereo.

3) Error increase with time: Although the Kitti stereo
dataset provides a set of two consecutive stereo pairs, one of
them containing also a ground truth, its images are randomly
selected, and thus it can not provide a larger sequence of
frames. In order to properly test the behavior of our method,

Fig. 6: Error for Kitti raw image sequence (40 frames)

we run our solution on a sequence from the raw Kitti dataset.
The sequence consists in 40 consecutive traffic images. For
this sequence we evaluate two types of approaches when
using the aforementioned correction method. As input to our
method we use as last available depth information:

• from the last disparity obtained with a regular stereo
(that also had reliable information from right camera)

• from last available disparity (previous frame)
Results are presented in Figure 6, which depicts the error

rate of the inferred disparity with respect to the frame
number, starting from the last available frame. It can be seen
that using the initial disparity (that consists in more reliable
results) is useful for the initial (around 30) frames. After
this point the information provided becomes too outdated,
so using the last available frame (although more unreliable)
leads to better results. The performance does not decreases
drastically for several frames, because of the similar structure
that all traffic images have. Nevertheless, these results also
show that our method works only for short-term failures,
since the error after 20 missing frames becomes too large
(> 20%).

VI. CONCLUSIONS

Convolutional neural networks are becoming more and
more popular in depth measurement, their capabilities being
extremely useful for autonomous vehicles perception. We
have shown here a novel way in which such learning methods
can be used – to conceal some of the possible camera
errors that may occur in stereo reconstruction. We consider
that such approaches are required in order to make stereo
reconstruction more reliable and trustworthy for autonomous
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cars. We intend to continue our work by developing other
convolutional architectures meant to solve other depth per-
ception problems such as upsampling or single image-based
depth generation.
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