
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Real-Time Semantic Segmentation-Based
Stereo Reconstruction

Vlad-Cristian Miclea and Sergiu Nedevschi, Member, IEEE

Abstract� In this paper, we propose a novel semantic
segmentation-based stereo reconstruction method that can keep
up with the accuracy of the state-of-the art approaches while
running in real time. The solution follows the classic stereo
pipeline, each step in the stereo work�ow being enhanced by
additional information from semantic segmentation. Therefore,
we introduce several improvements to computation, aggregation,
and optimization by adapting existing techniques to integrate
additional surface information given by each semantic class. For
the cost computation and optimization steps, we propose new
genetic algorithms that can incrementally adjust the parameters
for better solutions. Furthermore, we propose a new post-
processing edge-aware �ltering technique relying on an improved
convolutional neural network (CNN) architecture for disparity
re�nement. We obtain the competitive results at 30 frames/s,
including segmentation.

Index Terms� Stereo reconstruction, semantic segmentation,
deep learning, genetic algorithm, census, SGM, re�nement.

I. INTRODUCTION

DUE to the fast evolution of intelligent vehicles, real-time
depth perception has become a major area of interest.

Stereo reconstruction still remains one of the most feasible
methods in depth perception due to its low-cost and high
resolution output, being extremely useful for environment
understanding [22], [26].

During the last several decades stereo reconstruction meth-
ods have been classified as being either local or global. Local
methods rely on a small support window over which a similar-
ity criterion is applied. Global methods compute the disparity
of all pixels in the image by optimizing a global energy
function. Scharstein and Szeliski [40] standardize the stereo
reconstruction problem, by dividing it into four main phases –
cost computation, aggregation, optimization, refinement, each
phase being responsible for solving a particular sub-problem.
Most of the approaches on Kitti [32] and Middlebury [39]
benchmarks follow the standard taxonomy, proposing new
deep learning methods for each of these sub-problems.

Manuscript received April 4, 2018; revised October 23, 2018 and
February 8, 2019; accepted March 31, 2019. This work was supported
in part by the UP-Drive Project, Automated Urban Parking and Driving,
of the Horizon 2020 EU, under Grant 688652, and in part by the Romanian
National Authority for Scientific Research (UEFISCDI), a Romanian National
Research Agency, through the national research projects, PN III PCCF
SEPCA (Semantic Visual Perception and Integrated Control for Autonomous
Systems), under Project 9/2018, and in part by Multispectral Environment
Perception by Fusion of 2D and 3D Sensorial Data from the Visible and
Infrared Spectrum (MULTISPECT), under Project PN-III-P4-ID-PCE-2016-
0727. The Associate Editor for this paper was Z. Duric. (Corresponding
author: Vlad-Cristian Miclea.)

The authors are with the Department of Computer Science, Techni-
cal University of Cluj-Napoca, 400027 Cluj-Napoca, Romania (e-mail:
vlad.miclea@cs.utcluj.ro; sergiu.nedevschi@cs.utcluj.ro).

Digital Object Identifier 10.1109/TITS.2019.2913883

Recently, deep leaning methods such as [23], [30] show
that disparity can be directly estimated from the left and right
images, end-to-end training being employed. These methods
can obtain extremely accurate results, but they need a large
amount of data for training and most of them cannot run in
real time. Moreover, we are not 100% sure how such methods
behave when dealing with an unrecognizable situation, which
has not been met in training. This is of great importance espe-
cially in driving scenarios, where a total failure is extremely
costly and must be avoided.

In this paper we try to follow the classic taxonomy by using
improved variations of traditional methods for computation,
aggregation and optimization steps. For each phase we aim
for decent accuracy and focus on reducing computational
cost when running on a regular GPU. We propose the use
of semantic segmentation (Figure 1(b)) as a guidance for
deep scene understanding. Finally, we replace the unreliable
disparity pixels by using a CNN-based filter. The dense
disparity map obtained after applying our stereo reconstruction
algorithm (without post-processing) is shown in Figure 1(c),
while Figure 1(d) depicts the filtered disparity map, obtained
after refinement. The main contributions of this paper are:

� a collaborative integration of semantic segmentation into
stereo reconstruction;

� a novel optimal low-cost Census-based cost computation
adapted to each particular segment class;

� an enhanced cost aggregation scheme that incorporates
object boundaries;

� an optimization technique based on SGM that adapts P1
penalty to surfaces;

� a refinement filter obtained with a CNN capable to
increase the disparity reliability in driving scenarios;

� real-time (30 fps on a regular GPU) results, with an
accuracy close to state of the art.

Section II deals with presenting the state of the art in
stereo reconstruction solutions. Section III shows seman-
tic segmentation-based improvements for cost computation,
aggregation and optimization and explains the genetic algo-
rithms employed for these tasks. We describe the neural
network proposed for post processing in Section IV. The
effectiveness of our stereo method (for driving scenarios) and
of our refinement (in particular) is shown in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

A. Classic Taxonomy

Cost computation algorithms generally rely on a metric to
find similarities between patches from left and right images.

1524-9050 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 1. Disparity maps obtained with our method on traffic images.

Traditional metrics [18] are either intensity-based [47] – SAD,
SSD, NCC or non-parametric – Rank Transform, Census
Transform [50]. Lately, feature-based approaches have been
used for this step. Such methods either use hand-crafted
features [45] or enable learning skills by using convolutional
neural networks [35], [51].

In terms of aggregation most of the approaches [1] prefer
choosing a squared support window. According to [13] this
window should not exceed 7 × 7 pixels, whilst 5 × 5 repre-
sents a good trade-off between accuracy and speed. Particular
improvements have been proposed by [31], in which the cross-
based cost aggregation is introduced. This approach controls
the aggregation window by 2 parameters corresponding to
locality and intensity similarity. A different technique is pro-
posed by [25] in which a residual neural network is responsible
for edge detection. Edges are detected at different scales and
are later used for setting the aggregation window boundaries.

Semi-global matching (SGM) [19] is one of the most robust
optimization algorithms, ensuring close-to global consistency
while consuming a reasonable amount of resources. The
method approximates a 2D energy minimization by several
1D optimizations. There are various implementations of SGM
on different platforms CPU [43], GPU [15] or FPGA [3],
most of them obtaining real-time performances. Other similar
optimization methods are Graph Cuts [24] or Belief propaga-
tion [44], all of them being very expensive in terms of speed.

The last step in the workflow is disparity refinement. In this
phase unreliable parts of the disparity are replaced with pixels
with higher confidence. This is generally accomplished by
applying classic (edge-aware) filtering techniques such as
median filters [20], bilateral [36], [46] or guided [16].

More recently, a new category of edge-aware filters have
been introduced. Classic filters are approximated by optimiza-
tion mechanisms [5], [48], obtaining more accurate results,
with higher computing performances. An edge-aware deep
learning-based guided filter is proposed by [27]. The method
introduces a joint convolutional neural network that enhances
a target image by using priors extracted from its RGB
counterpart.

B. End-to-End Stereo

Mayer et al. [30] propose an encoder-decoder like neural
network architecture. Left and right images are stacked
together and pass through several fast convolutions and decon-
volutions, resulting in an accurate disparity map obtaining also
a very good computation time. Moreover, the paper introduces
a large training synthetic dataset with dense ground truth
containing scenarios for both driving and indoor applications.

One of the top approaches currently on the Kitti 2015
dataset is GC-Net [23]. The solution exploits extensive 2D
and 3D convolution layers for feature and context extraction.
Additionally, it uses a probabilistic disparity selection method
(differentiable soft-argmin) that facilitates end-to-end training.
Besides these, stereo reconstruction can be computed even
without a humanly generated ground truth, by employing
either self-supervised [53] or unsupervised [54] learning.

C. Semantic Segmentation-Based Stereo

Most of the algorithms that combine image segmentation
with stereo try to increase disparity accuracy by using object
information in the post processing step. The authors of [?]
propose a plane fitting-based segmentation by filling the
disparity map relying only on confident disparity pixels. The
authors of [49] achieve the same goal by using super-pixels
as means to group similar pixels. The problem with all these
implementations is the increased computational effort making
them not viable for real-time usage.

More recently semantic segmentation has become more
and more reliable for confidently highlight scene objects.
One of the most accurate methods on Kitti dataset [32] –
Displets [14] – rely on the similarity given by specific object
structures to fill sparse disparity estimates. In a more recent
article [41] the authors propose to enrich the scene information
and obtain more reliable results by using semantic information
in relation with their stixel-based stereo method.

III. STEREO PROCEDURE

In our work we propose to apply a “divide and conquer”
approach, separating the driving scene into homogeneous

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MICLEA AND NEDEVSCHI: REAL-TIME SEMANTIC SEGMENTATION-BASED STEREO RECONSTRUCTION 3

Fig. 2. Workflow of the proposed method.

regions. In the initial step of the algorithm we train a convolu-
tional neural network for accurate pixel-wise scene segmenta-
tion. Then, for each class we determine an optimal census
mask, an improved aggregation window, an optimal SGM
penalty P1 and reliable information for a better refinement.
An overview of the proposed stereo method can be seen
in Fig. 2.

A. Semantic Segmentation

The initial step in our solution is to compute a semantic
segmentation of the scene. Classic segmentation methods have
been combined with stereo [49], generally being used as a
post-processing [21]. However, we can now take advantage
from the boost that semantic segmentation lately received with
the introduction of deep neural networks. Cityscapes dataset
[8] enables methods such as [29] or [37] to accurately classify
object categories at pixel level.

One of the most robust approaches in semantic segmentation
is ERFNet [38], having one of the best trade-offs in terms
of accuracy (69.7 for IoU) vs speed (around 20 ms on
a NVIDIA Titan X). The method uses an encoder-decoder
architecture, with 23 layer blocks. The key for speed and
precision is their novel layer block – a mixture of residual
connections and factorized convolutions that preserves the
structure in the image and reduces computational costs. The
method classifies the scene into 19 foreground and background
classes. We slightly modify several parts in this method to
accommodate the needs in our stereo pipeline. Therefore our
solution will only need a subset of classes:

� For the computation and optimization phases we are
more interested in surface types than in object bound-
aries. We have divided the object scene into 7 classes:
road, vehicles, traffic signs, buildings, sidewalk, veg-
etation, terrain, that correspond to horizontal, vertical,
slanted, or more complex surfaces. This division is
empirically selected through exhaustive testing, while
observing that increased segmentation granularity might
lead to increased computational costs.

� For aggregation and refinement the segmentation map
will include all 20 (19 + unknown) segment classes.
In this case we need more a-priori object information,
and edge detection is really important.

B. Cost Computation

State of the art [32] shows that deep-learning approaches
are viable for cost computation. However, very good accuracy

comes with increased computational workload and such meth-
ods cannot yet achieve real-time performance and might fail
when dealing with unrecognizable data. Therefore, we rely on
classic non-parametric methods that are less efficient but fast
and reliable (because of their geometric nature).

While intensity-based metrics suffer from poor adaptation
to bad illumination conditions, Census Transform stands out as
the best trade-off between accuracy and speed. Moreover, its
center-symmetric implementation is shown to further improve
the accuracy [43]. Therefore we compute the cost by:

Ccomp(p, d) = H am(Tl(p, N(p)), Tr (p�d, N(p�d))) (1)

where H am is the Hamming distance, T is the Census Trans-
form of the image patch centered in p. The pixels selected for
the image patch are given by the bitstring census mask:

N(p) =
�

i�Neigh(p)

bi 2i (2)

where Neigh is the chosen neighborhood, and bi is either
1 or 0 according to the importance of the pixel.

We introduce here a method to find the optimal census
masks for each particular segment class. The method uses
stochastic optimization based on genetic algorithms to opti-
mally generate a bitstring for each particular segment class.
As presented in our previous works [33], [34], a viable
census mask usually covers a surface of maximum 15 × 15
pixels, giving enough information and allowing for maximum
32 pixels to be selected. Moreover, the computation time
increases proportionally to each additional pixel, so larger
census windows might lead to lower frame rates. We present
the methodology for finding a segment-dependent optimal
census mask in Algorithm 1.

The initial population is composed by a set of randomly
generated census masks (bitstrings). For each member of a
population we define a fitness function as being the percent
of misclassified pixels (obtained with that specific census
mask) with respect to a given ground truth. We optimize the
census mask by means of selection (best k census masks
in a generation), crossover (interchanging two top-selected
individuals) and mutation (randomly flipping several bits).
We run the optimization procedure until the difference between
the best results obtained in several consecutive generations is
smaller than a predefined threshold.

To sum up, according to this method, we add an additional
parameter to the neighborhood selection and optimally select

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 1 Algorithm for Optimal Census Mask
1: procedure GENERIC ALG. FOR CENSUS

2: for all segments do
3: initialize population(0)
4: dCT � apply CT(population(0))
5: population.fitness(0) � err(dCT , dGT)
6: repeat
7: perfrom selection, crossover and mutation
8: on population(i)
9: partially initialize population(i+1)

10: population(i+1) � population_mut(i) +
population(i+1)

11: dCT � apply CT(population(i+1))
12: population.fitness(i+1) � err(dCT , dGT)
13: until i=finalGeneration
14: end for
15: end procedure

Fig. 3. Pixels used for census in cases of road and vertical surfaces.

a census mask for each particular semantic class. Therefore,
the census mask is given by:

N(p, S(p)) =
�

i�Neighs

bi 2
i (3)

Figure 3 exemplifies two census masks (for road surfaces
vs small vertical surfaces). On the left side we have showed a
generated mask for road surfaces. The GA selects pixels such
that the entire window is covered. On the other hand, the right
image shows the window that corresponds to vertical surfaces
(i.e. poles). In this case the GA selects only pixels from the
center of the image, without accounting for pixels at left and
right ends.

We choose this approach since it extracts important features
for each type of surface in the scene, without any cumbersome
deep learning procedure that may increase the resource cost.

C. Cost Aggregation

The key aspect for a good aggregation scheme is finding
similar neighboring pixels. Generally, similar pixels within a
predefined squared window are selected:

CAggr (p, d) =
�

i�Neigh(p)

Ccomp(i, d) (4)

where the Neigh(p) is a squared window centered in p.

However, a predefined window is not always beneficial
since it accounts only for locality, not for intensity similarity.
A better aggregation technique is to control the window
expansion using two parameters: �, corresponding to locality,
and � , responsible for intensity. Therefore, the window N(p)
is adapted such that it satisfies:

(�p � i�2 < �) � (|I (p) � I (i)| < �) (5)

where �p � i�2 is the Euclidean distance between the pixels
p and i , while the values for � and � are predefined. In our
Kitti-related experiments, � = 5, while � = 10. This trick is
shown to alleviate some of the aggregation errors, but it might
still aggregate unreliable pixel information (beyond edges).

As we try to rely on classes obtained through semantic seg-
mentation we propose a new aggregation technique in accor-
dance to the segmentation. Therefore, we modify the formula
in equation 5 such that it includes a third term, that prevents the
aggregation window expansion from including pixels outside
object boundaries. The aggregation window Neigh(p, S(p))
contains an additional parameter and it becomes controlled by:

(�p � i�2 <�) � (|I (p)� I (i)|<�) � (S(i) = S(p)) (6)

where S(i) is the segment class of pixel i .

D. Optimization

We use the SGM optimization technique. The most critical
part in SGM is the penalty selection: good values of P1 –
penalty for small disparity changes and P2 – penalty for
large disparity disruptions are necessary. Even though ideally
we would have particular penalties for each pixel (generated
through deep learning [42]), we prefer to adapt them for
each segment class S(p) and for each direction r . Therefore,
the SGM optimization formula becomes:

Lr (p, d) = CAggr (p, dp) + min(Lr (p � r, dp),

Lr (p � r, dp � 1) + P1(r, S(p)),

Lr (p � r, dp + 1) + P1(r, S(p))),

mink�D Lr (p � r, k) + P2(r)) (7)

COpt (p, d) =
�

r

Lr (p, dp) (8)

For this step we also use a stochastic optimization based
on Genetic Algorithms (GA). All P1(r, S(p)) and P2(r, S(p))
values are plugged in the algorithm and we optimize accord-
ing to the resulting pixel error (with respect to a specific
ground truth). Kitti2015 [32] training images are used for
optimization.

Early results show that error largely fluctuates when both
P1 and P2 are introduced into the optimization scheme.
We choose to only adapt the P1 value, selecting a P2 penalty
that only depends on its neighbor intensities (as in [4]):

P2(r) =
P �

2

|IL(p) � IL(p � r)|
(9)

where P �
2 is predefined. For most of our experiments, P �

2 = 35.
This choice is compliant with our semantic segmentation-

driven method since we can fully rely on a-priori detected

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MICLEA AND NEDEVSCHI: REAL-TIME SEMANTIC SEGMENTATION-BASED STEREO RECONSTRUCTION 5

Algorithm 2 Algorithm for Optimal SGM Penalty P1

1: procedure GENERIC ALG. FOR P1
2: for seg = 1 to all segments do
3: initialize population(0) with P1(seg)
4: end for
5: dSG M � apply SGM(population(0))
6: population.fitness(0) � err(dSG M, dGT)
7: repeat
8: perfrom selection, crossover and mutation
9: on population(i)

10: for seg = 1 to all segments do
11: partially initialize population(i+1) with P1(seg)
12: end for
13: population(i+1) � population_mut(i) +

population(i+1)
14: dSG M � apply SGM(population(i+1))
15: population.fitness(i+1) � err(dSG M, dGT)
16: until i=finalGeneration
17: end procedure

object boundaries. It results in a total number of # params of
additional P1 parameters, where # params is defined as:

params = #directions • #classes (10)

The stochastic optimization algorithm used for P1 genera-
tion is presented in Algorithm 2. We consider that GA con-
verges when the error criterion � (equation 11) is smaller than
a predefined threshold or the maximum number of iterations
is reached.

� =
�

r,Ns

|P1(r, s(p))(i) � P1(r, S(p))(i + 1)| (11)

where i is the current iteration number.
Disparity is then selected according to the WTA (winner

takes all) approach. Left-right consistency checking is done,
unreliable pixels being eliminated.

IV. DISPARITY REFINEMENT

A. Filtering as Post-Processing

Like in previous stereo steps, the key for a good refinement
is to find image edges so that scene objects are clearly
delimited one from another. While the usage of the fast (as in
computation time) median filter is quite limited only to small
disparity gaps, bilateral and guided filters need too many
computational resources.

We rely here on classes given by the semantic segmentation,
which will define areas with similar characteristics. Due to the
high scene complexity, for this part we propose a new filtering
scheme based on deep learning.

B. Refinement Architecture

For the learning-based refinement filter we employ a 3-input
ConvNet architecture (Fig. 4). The first part of the net-
work consists in two similar branches, with the role of
extracting reliable features from both depth and RGB image.

Fig. 4. Architecture of the proposed filter.

Fig. 5. Non-bottleneck1D block having a receptive field size of 5 × 5.

A 30 × 30 patch from the Left RGB image is the input to
the first branch, while a patch from the incomplete disparity
(resulted from optimization step) is plugged in to the second
one. Each branch consists of three residual Non-bottleneck1D
blocks, followed by a Batch Normalization layer. The first
block contains 64 feature maps, the second 128, while the
third produces just one feature map, that incorporates the most
relevant features extracted from each branch.

The convolution layers are designed using the speed-up
techniques presented in [38]. A Non-Bottleneck1D (Fig. 5)
block is therefore shaped by:

� Residual connections – important information extracted
from initial layers is preserved throughout the entire
network so that later layers can benefit from it;

� 2D convolution layers approximated by two 1D convo-
lutions – this trick reduces the number of convolution
weights by more than a half while preserving stability
and accuracy;

� ReLU units inserted after each convolution – used to zero
the gradients on negative input values.

Exhaustive testing showed us that RGB features are not
enough to provide effective guidance for the filter. This
problem is mainly caused by the mixture and the variety of
information RGB maps carry. Although the first part of the
network tends to extract more effective features and provide

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

relevant information, we consider useful to aid this process
with an additional term. Therefore results of the two branches
are also concatenated with a patch extracted from the segmen-
tation image. The semantic segmentation map is the third set
of important features for our network, containing information
about object boundaries and linking together similar structures.

The second part of the network consists in two additional
Non-Bottleneck-1D blocks, interleaved by a layer of 1 × 1
convolutions. The role of the second part is to join together the
three maps and generate a more reliable disparity, simulating
a non-linear regression. This way we will integrate the knowl-
edge extracted from the three aforementioned feature maps.
We avoided concatenating multiple feature maps from RGB
and incomplete depth branches for two reasons: 1) to keep the
complexity of the regression branch as low as possible; and
2) to keep the weight of semantic map equal to the other two.

Numerically, a pixel-wise mean squared error is then com-
puted between the resulting completed depth patch and the
ground truth, thus estimating the degree of convergence for
our method.

C. Parameters and Training Details

All patches are normalized by subtracting the mean and
dividing with the maximum image intensity. Similar learning
rates have been given to both depth and image branches.
Experimental testing showed that our network converged only
when the segmentation learning rate was set to 1/5 of the
learning rate for RGB and Depth. In other scenarios segmen-
tation features became too powerful, and depth information
was dropped. We tried two optimization methods: Stochastic
Gradient Descent and Adaptive Moment Estimation (Adam).
Adam seemed to properly control the learning so we chose it
as our optimizer.

We trained the network for 400 epochs, with a batch size
of 128, decreasing the learning rate with a factor of 0.1 at the
interval of 100 epochs.

V. EXPERIMENTAL RESULTS

The main prerequisites for training are:
1) RGB left images for semantic segmentation with driving

scenarios
2) accurate ground truth (GT) depth images for training the

GA in computation and aggregation
3) dense accurate ground truth for refinement filtering
The semantic segmentation network [38] is trained on the

Cityscapes dataset, using Torch7 framework [7], the results
being normalized according to Kitti 2015 mean and standard
deviation.

Although Kitti 2015 dataset is adequate for the first two
needs, the GT it provides is sparse (given by LIDAR).
DispNetC [30] provides the dense GT we need, but its
synthetic nature reduces the inherent difficulties found in real
situations (eg. unexpected illumination, scene complexity).
A different option is to choose the disparity obtained with a top
stereo method (MC-CNN acrt [51]) as our dense ground truth.
While this method has a low error rate on the evaluated Kitti
pixels, it is adapted to real-life situations. We choose a mixture

of these two, benefiting from both pixel-wise accurate ground
truths and real-life driving scenarios. The training set is
divided into training (80%) and validation (20%) subsets.

While our stereo method and the genetic algorithms are
implemented in CUDA, the refinement CNN is trained using
Torch7. The testing of our refinement network (forward pass)
is performed by using our own CUDA-based deep learning
framework. The framework resembles Torch7, using NVIDIA
CuDNN [6] primitives for deep learning layers. This allows
us to integrate all phases in a single application.

A. Stereo Method

1) Results Obtained for Various Census-Based Cost Com-
putation Methods: We test the following masks:

� Star – the pattern proposed by [28]. This is a symmetric
pattern containing 32 pixels inside a 9 × 9 window;

� Center-avoiding – the pattern introduced in [13]. This
pattern selects pixels that are situated at a 2-3 pixel
distance from the center, neither too far, nor too close;

� Dense – This pattern is the most simple one. It accounts
for all the pixels in the image. Because of its proportional
spreading to size feature, it gives larger processing times
for larger windows. We considered here a 7 × 7 window;

� GA – This is the method based on the genetic algorithm
proposed in [33], selecting an optimal census mask for the
entire set of images. It selects optimally 32 pixels inside
a 11 × 11 window so that resulting cost is represented
on 32 bits.

� GA + Seg – The optimal masks and optimal P1 are given
by the proposed genetic algorithms 1 and 2. This contains
a set of 6 census masks, each of them containing specific
(max 32) pixels inside a 11 × 11 window and 6 penalties
ranging from 7 to 35.

The results obtained at pixel-level are presented in table I.
A first observation is that since more than 50% of the pixels
belong to the road surface (Seg 1), algorithms that lead on
that specific surface (Dense, and GA-based) top the overall
ranking. Another remark is that although regular (dense) CT
thrives on regular surfaces – fronto parallel (Seg 3 and Seg 4)
and road, it behaves poorly on irregular objects such as
vegetation (Seg 6) and terrain (Seg 2).

All in all, we can notice that our newly introduced
approach ranks first in this classification, outperforming the
non-segmented GA approach with almost 10% for the Census-
only case, and the other methods by more than 17%. However,
this margin strongly decreases when we introduce the energy
minimization term. This happens because the SGM energy
minimization compensates for the lack of correlation accuracy.
An additional uncertainty is added by the inherent segmenta-
tion errors at object interactions so we can say that our method
would work even better with improved semantic segmentation
techniques [9].

2) Results Obtained With Our Stereo Method on Kitti
Dataset: In order to evaluate our stereo system, we first
show the behavior of each particular phase in our algorithm.
We evaluate the speed and accuracy for the enhancements
introduced with respect to a regular classic SGM implementa-
tion. The classic SGM is composed by a regular 5x5 Census,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MICLEA AND NEDEVSCHI: REAL-TIME SEMANTIC SEGMENTATION-BASED STEREO RECONSTRUCTION 7

TABLE I

AVERAGE ERROR PERCENT FOR CENSUS-ONLY AND SGM OBTAINED WITH VARIOUS CENSUS MASKS WITH ERROR THRESHOLD T = 3

Fig. 6. Disparity maps obtained with various methods on Kitti 2015 images.

TABLE II

EXECUTION TIME INCREASE PER EACH STAGE (MS) VS ERROR REDUCTION FOR KITTI 2015 TRAINING
IMAGES (1242 × 375) WITH A MAXIMUM DISPARITY OF 128

5x5 squared aggregation, SGM optimization with fixed para-
meters, followed by a median filter. Figure 6 (d) reveals the
dense disparity map obtained with the classic SGM, while
Figure 6 (e) shows the improved disparity given by our
solution. 17 ms are required for the four stereo steps (of
which 8 ms for refinement). The post-processing network
gives the largest accuracy improvement, reducing the overall
error with almost 5%. Figure 6 (f) shows the filtered image,
in which pixels from difficult areas (eg. around shadowed
surfaces and edges) get reconstructed correctly. All other steps
prove to outperform their regular counterparts by introducing
only a 1 ms delay. We show that we can further optimize
each step while introducing only a small number of additional
computations. Numerical results can be seen in Table II.

B. Refinement

1) Filter Variation: For this part we use the same baseline
stereo method, and see how our filter behaves in comparison
with other state of the art approaches. We chose some of the
most commonly used refinement filters: median [20], bilat-
eral [46], guided [16], fast bilateral [36] and DeepJoint [27].
We implemented our own median and fast bilateral filters and
used the OpenCV implementations for the bilateral and guided
filters. DeepJoint filter has been trained using images from
Kitti2015 dataset. Our filter is shown to outperform its counter-
parts by a large margin while maintaining a relatively low time
consumption. This evaluation also reveals the improvement we

TABLE III

PERFORMANCE OF VARIOUS POST-PROCESSING TECHNIQUES

TABLE IV

ACCURACY OF THE FILTER WHEN APPLIED
TO VARIOUS STEREO METHODS

obtained (around 2.5% wrt the joint filter) by introducing the
segmentation map into the CNN. Table III shows numerical
results.

2) Refinement Behavior When Changing the Stereo Method:
We are also interested to see how our filter behaves when the
underlying stereo method is changed. We chose the following
stereo methods as input to post-processing: Census-only, Block
Matching (BM) and Semi-Global Block Matching (SGBM)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE V

ERROR OBTAINED IN EACH STEP WITH MISSING/ERRONEOUS SEMANTIC INFORMATION

from OpenCV, MC-CNN fast, MC-CNN accurate from [51]
and our method. For each of these methods we performed left-
right consistency to eliminate wrong results (false matches).
The post-processing network was trained only once, with
patches from a subset of Kitti and DispNetC images.

Since the goal for our network is to filter out only small
disparity inconsistencies, it cannot cope with the large errors
found in Census-only case. Stereo solutions with an average
error can really benefit from our refinement, the error largely
decreasing for our method and for OpenCV-SGBM. On the
other hand, stereo solutions with low error can only marginally
gain from post-processing, since they use other optimization
mechanisms. Numerical results are shown in Table IV.

C. Results With a Better, Without or With
Misleading Semantic Maps

In order to demonstrate the robustness (with respect to
driving scenarios) of our method we test its behavior when
a correct semantic map information is unavailable. Since
convolutional neural networks are employed for the semantic
task, we consider possible that an unrecognizable situation
will appear (possibly untrained by algorithm creators). Fur-
thermore, we would like to see the results we can obtain with
our stereo method by using the best segmentation possible.
We consider the following cases:

� the semantic map is missing. This is the most common
case, in which the semantic information is not available;

� the semantic map is wrong. In this case we test if a bad
semantic segmentation will mislead the stereo solution.

� the semantic map is more accurate. In this case we
test how much the stereo results will modify if the
segmentation was computed with a different CNN. For
this case we used PSPNet [52], a method that performs
better than ERF-Net (81.2 IoU for Cityscapes images).

� the semantic map is perfect. For this case we used the
semantic ground truth from Kitti dataset [2].

Cost computation and optimization steps are less dependent
on learnable features at testing phase – a bad segmenta-
tion will only prompt the cost computation and optimization
algorithms to use a wrong census mask and P1 penalty,
giving sub-optimal results. Aggregation is more dependent
on the segmentation especially in the areas around edges
(a bad segmentation might include unwanted information in
the aggregation scheme or might exclude relevant costs).
Furthermore, refinement will largely suffer since 1/3 of the
features we plug-in to the regression branch will be incorrect.
Since these blocks directly rely on semantic data for edge
information, they require further testing.

The results are presented in table V. The overall error
increases if the semantic information is not present (around
5% for computation, 4% for aggregation, 2% for optimization
and 2-3% for refinement). For aggregation the error percent is
larger when no semantic information is given whereas in the
computation, optimization and post-processing a misleading
semantic map will confuse the genetic algorithms and the
refinement filter.

On the other hand, we can observe that the smallest number
of mismatched pixels is obtained when the best segmentation
map (GT) is employed. Also, our results show that a better
segmentation (PSPNet) leads to better stereo solutions.

All in all, we can see that since our method only relies on
learning as an augmentation process to a well-built geometric
method, in case the CNN fails (eg. in scenarios that have
not been met during training), our method still gives a decent
disparity map. On the other hand, an end-to-end stereo method
will most likely fail when dealing with a similar situation.

D. Results on Kitti 2015 Testing Dataset

In addition to the previously mentioned testing, we also
show the results obtained with our method on the Kitti
2015 testing dataset. As top approaches rely on feature-based
cost computation (expensive in terms of speed), we compare
here only approaches on the dataset that can (almost) run
in real-time (t < 100ms). We show the error given by the
mismatched pixel percent (with a threshold error of 3) for both
background and foreground non-occluded pixels. Numerical
results can be seen in Table VI.

DispNetC [30] gives very accurate results and this can be
seen especially for foreground objects. In terms of accuracy,
our solution is as good as DeepCostAggr [25], both methods
relying on good object boundary estimates for enhanced
reliability. These results prove that our refinement method
can compensate the reduced accuracy of cost computation.
All CNN-based methods outperform the accuracy of classic
counterparts, but need dedicated hardware implementations to
keep up with the real-time constraint. Moreover, both of these
methods rely on CNNs to directly compute the disparity so are
susceptible to undesired errors caused by untrained scenarios.
This drawback makes them not viable for autonomous driving
applications. In contrast, our method will not suffer from this
drawback (as we showed in previous section).

In terms of time performance our method is shown to run
at 30 fps on a regular GPU. However, half of this time is
actually consumed by semantic segmentation and this task is
generally required by other algorithms in perception. All in all
the results obtained for both accuracy and time performance

