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Multi-task Network for Panoptic Segmentation in Automated Driving
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Abstract—In this paper, we tackle the newly introduced
panoptic segmentation task. Panoptic segmentation unifies se-
mantic and instance segmentation and leverages the capabilities
of these complementary tasks by providing pixel and instance
level classification. Current state-of-the-art approaches employ
either separate networks for each task or a single network
for both task and post processing heuristics fuse the outputs
into the final panoptic segmentation. Instead, our approach
solves all three tasks including panoptic segmentation with
an end-to-end learnable fully convolutional neural network.
We build upon the Mask R-CNN framework with a shared
backbone and individual network heads for each task. Our
semantic segmentation head uses multi-scale information from
the Feature Pyramid Network, while the panoptic head learns
to fuse the semantic segmentation logits with variable number
of instance segmentation logits. Moreover, the panoptic head
refines the outputs of the network, improving the semantic
segmentation results. Experimental results on the challenging
Cityscapes dataset demonstrate that the proposed solution
achieves significant improvements for both panoptic segmen-
tation and semantic segmentation.

I. INTRODUCTION

Standing at the intersection between semantic and instance
segmentation, panoptic segmentation enables a complete
scene understanding at pixel level and at instance level
for dynamic elements of the scene. Applications such as
automated driving could benefit from the rich information
provided by panoptic segmentation, which can enhance a
sensor fusion based environment perception. Lately, the
research community has given attention to both semantic and
instance segmentation tasks and proposed solutions using
deep convolutional neural networks (CNN). Each task has
its own architecture particularities. In the case of semantic
segmentation, Fully Convolutional Neural Networks (FCN)
[28] [5] [43] [39] extract features using dilated residual
blocks in order to preserve a higher output resolution. On
the other hand, instance segmentation state-of-the-art results
have been achieved by the Mask R-CNN framework [12]
where a Feature Pyramid Network [25] provides a multi-
scale feature representation for object detection and instance
segmentation.

Semantic segmentation partitions an image into meaning-
ful segments, which share a common representation. Dense
pixel prediction classifies each pixel into one of a few
classes. Classes can be categorized as stuff or background,
representing uncountable elements in the scene that usually
have repetitive textures, but not a specific size or shape such
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Fig. 1: We propose a unified network architecture for instance
segmentation, semantic segmentation and panoptic segmentation.
Instance and semantic segmentation are fused into the panoptic
output providing pixel-level class information and instance IDs for
objects.

as sky, vegetation, buildings, road. Besides szuff, there are
the thing classes or the foreground. Things are countable
objects that have a well-defined shape. One of the advantage
of semantic segmentation is that it performs well in stuff
classification, since these classes are more structured. More-
over, it provides good delimitation between stuff and thing
pixels such as road from car or sidewalk from pedestrian.
On the other hand, semantic segmentation cannot distinguish
between objects of the same class and since classification is
achieved at pixel level, sometimes fails in classifying object
classes belonging to the same category.

Instance segmentation as seen in Figure 1 predicts a
semantic class and an instance label for each thing pixel
in the image. It provides a mask for each object, masks
which could overlap since classification is performed at
instance level. Objects are detected and classified as a whole,
therefore the semantic and instance class are propagated to
each pixel in the instance mask.

Kirillov et al. [17] introduces the panoptic segmentation
task as a unified semantic and instance representation. Panop-
tic segmentation is challenging since each task has led to dif-
ferent architectural design choices tailored to achieve state-
of-the-art results on tasks specific benchmarks. Moreover,
using separate networks brings high computational costs and
high memory footprint. And finally, fusing the outputs of
semantic and instance segmentation is not trivial, due to
overlaps between instance masks or between instance masks
and background.

Considering that these tasks are complementary, we want
to leverage the capabilities of each task and propose unifying
semantic and instance segmentation under one architecture.
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We solve the output fusion by designing an end-to-end
trainable network that can learn object occlusions and scene
depth ordering. We employ a ResNet [13] architecture for
feature extraction and a Feature Pyramid Network (FPN)
for multi-scale feature representation. On top of the shared
backbone we introduce individual network heads for the 4
tasks: Faster R-CNN object detection and classification [10],
Mask R-CNN instance segmentation, [12], semantic segmen-
tation and panoptic segmentation. The semantic segmentation
head learns multi-resolution image features at 4 scales,
following the Feature Pyramid Network (FPN). We design a
lightweight decoder-style semantic segmentation head which
encodes context information using Pyramid Pooling Module
(PSP) [43] and recovers object boundaries and details us-
ing low-level features [5] and upsampling operations. The
panoptic segmentation head performs semantic and instance
level recognition by pixel-level classification. The semantic
segmentation representations belonging to thing classes are
enhanced by introducing corresponding features from the
instance segmentation head guided by the 2D bounding box
detection. We consider stuff classes as well as the instance
labels as the panoptic segmentation classes, which could vary
with each image. We perform experiments on the Cityscapes
[7] dataset, in which our model achieves top performing
results, with 75.4% mloU and 57.3% PQ.

II. RELATED WORK

Semantic segmentation: Fully Convolutional Neural Net-
works (FCN) [28] achieve state-of-the-art results for se-
mantic segmentation and dominate the benchmarks. Coarse
grained representations provide better localization and
stronger context information, while high resolution features
provide details of finer scales such as shape and bound-
aries. As both aspects are equally important for semantic
segmentation, several mechanism have been proposed to
achieve both good localization and pixel level classification.
Dilated convolutions [4][5][6] with various dilation rates in
the last residual blocks enlarge the field of view of filters
by capturing long-range information without decimating the
resolution. An alternative to dilated convolutions represent
deformable convolutions [9], where the network learns fil-
ters with adaptive receptive fields. Important advances in
semantic segmentation have been achieved with Pyramid
Networks. Spatial Pyramid Networks (PSPNet) [43] employ
pooling pyramid after the last dilated convolutional layer and
exploit global context information by fusing pooled features
at four scales. Atrous Spatial Pyamid Pooling (ASPP) [4],
[5] capture multi-scale representations with parallel filters
at various sampling rates. Dilated convolutional neural net-
works have a high memory footprint since dilated filters
generate high resolution features. Much attention has been
directed to another architectural design, the encoder-decoder
[311[36][11[37]1[24][39][19], where the encoder, a usually
deeper and narrower network learns contextual information
and the decoder, a lightweight network recovers the reso-
Iution loss and shape of the segments. In [15][42][8] the
authors extend the Mask R-CNN framework and add a

segmentation head on top of the Feature Pyramid Network
to achieve comparable results with single-task networks for
dense pixel prediction. Our network follows the encoder-
decoder architecture for semantic segmentation, in which the
shared backbone encodes feature representations at different
scales and the Feature Pyramid Network and the segmenta-
tion head recovers shapes and spatial information.

Instance segmentation: Instance segmentation ap-
proaches usually follow two directions and are either region-
based or semantic segmentation based. Region-based in-
stance segmentation generate candidate instance regions us-
ing state-of-the-art detectors such as Faster R-CNN [10].
Other methods directly propose candidate masks [3][33][34].
Mask R-CNN [12] has demonstrated outstanding perfor-
mance on benchmarks [7][26] and the COCO detection
challenge [17]. Based on a shared backbone, the network can
be jointly trained for 2D bounding box detection and classi-
fication and also instance segmentation. Variants of Mask
R-CNN include Cascade R-CNN [2], Non-local networks
[40]. Other types of instance segmentation approaches start
from the semantic segmentation and perform clustering of
pixels to obtain instances [18] [27][29] [14]. Other works
such as PersonLab [30], CornerNet [20] introduce keypoint
guided instance segmentation, while Box2Pix [38] predicts
pixel-wise offset vectors from the object centers as well as
semantic segmentation and bounding boxes. Region-based
methods achieve top-performing results on detection bench-
marks, therefore we choose as baseline the Mask R-CNN
model for object detection and instance segmentation and
propose an improved segmentation and panoptic head.

Panoptic segmentation: Panoptic segmentation unifies
semantic and instance segmentation into one output in which
each pixel receives a semantic class and each thing pixel
receives an instance label. Kirillov et al. [17] introduce a
simple and robust baseline for both tasks by extending the
Mask R-CNN with a lightweight dense prediction branch
and a simple post-processing step solves instance overlaps
to obtain the final panoptic format. In [8] the authors design
an improved semantic segmentation head based on Atrous
Spatial Pyramids on top of Mask R-CNN and introduce a
novel output fusion of semantic segmentation and instance
segmentation outputs based on instance label propagation
following the semantic path at category level. UPSNet [42]
provides a unified framework on top of Mask R-CNN and
and proposes a parameter-free panoptic segmentation head
that leverages logits from the segmentation and instance
head. A weakly supervised model was developed by Li et al.
[22], where thing classes are supervised with bounding boxes
and stuff classes with image tags. Li er al. [23] introduce
attention modules at proposal and mask level to enhance
background features in the background branch. A Non Max-
ima Suppresion (NMS)-like procedure solves overlaps be-
twen thing and stuff and generates the panoptic segmentation
map. TASCNet [21] ensures stuff and thing mask alignment
using a cross-task consistency loss, facilitating semantic and
instance fusion. Our main contribution in this area represents
the design of a new semantic segmentation head on top of the
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Fig. 2: A shared ResNet-FPN network performs 4 tasks: object detection and classification, instance segmentation, semantic segmentation
and panoptic segmentation. PSP denotes the Pyramid Pooling Module. The semantic segmentation head is described in detail in Section
III-A. The panoptic head fuses the semantic segmentation logits and upsampled masks.

Feature Pyramid Network and the design of an end-to-end
trainable unified network that outputs panoptic segmentation
and avoids hand crafted post-processing steps.

ITII. PANOPTIC SEGMENTATION NETWORK

We propose a unified network for instance, semantic and
panoptic segmentation. We build upon the strong baseline
of Mask R-CNN and design a decoder-style semantic seg-
mentation head which classifies each pixel in the image of
both thing and stuff categories. The panoptic segmentation
head connects the semantic and instance branch and enables
supervised guided fusion of the two outputs within the
network. In the following section, we provide details about
the network architecture and implementation details. The
network architecture overview can be seen in Figure 2.

A. Model Architecture

Backbone: The Mask R-CNN framework employs a
shared convolutional network backbone based on ResNet
[13] and Feature Pyramid Network (FPN) [25] for feature
extraction. FPN encodes multi-scale representations from
1/32to 1/4 and is built in a top-down manner by upsampling
low resolution features and merging them with higher level
features via lateral connections.

Instance Segmentation Head: We adopt the detection
and instance segmentation head from Mask R-CNN. In the
first stage, the detector proposes object candidates, while in
the second stage, candidate bounding boxes are regressed
and classified and a binary mask is predicted for each thing
object. The mask logits are further processed by our panoptic
head for feature enhancement at object level.

Semantic segmentation Head: The semantic segmenta-
tion head predicts per pixel classification for both thing and
stuff segments. We start with the baseline design of the FPN
with a 4-scale pyramid at 1/32, 1/16, 1/8 and 1/4 from the
original scale. We follow the original implementation with
256 output feature maps at each FPN level. Each level of

the pyramid is augmented with a set of operations specific
to its scale: lower levels capture context information, while
higher levels highlight detailed features. We employ the
Pyramid Pooling Module (PSP) [43] for capturing long-
range dependencies at scale 1/32 and 1/16 as seen in 3.
The PSP module applies average pooling operations with
different pooling rates. The output of the pooling operations
have sizes [1 x 1], [2x 2], [3 x 3] and [6 x 6]. Next, the output
is scaled to the size of the input 1/32 or 1/16 respectively.
The PSP output from scale 1/32 is upsampled two times and
concatenated with the PSP output from scale 1/16. Next, we
apply feature dimension reduction with a 1 x 1 convolution
to 128 channels and another [ 3 x 3, 128] convolution,
Batch Normalization, ReLU follows. For upsampling, we
perform bilinear interpolation followed by a [3 x 3, 128]
convolution. This upsampling stage is repeated at scale 1/8.
The resulted feature maps which are 1/4 smaller than the
original image scale are concatenated with low-level features
from corresponding feature representations in the ResNet
backbone. Chen et al. [6] demonstrates that using low-level
features in the decoder leads to better perfomance. We follow
this design choice and reduce the channels of the low-level
features to 32 using a [1 x 1] convolution. The concatenated
features are passed through 2 convolution operations with
[1 x 1, 256] filters and [3 x 3, 256] filters. Finally, a 1 x 1
convolution generates the final class predictions. Different
from the baseline [15], where the semantic head predicts
an other class for all objects, pixels are classified into all
stuff and thing classes. To obtain the final predictions, we
associate per-pixel softmax and the semantic segmentation
head is trained to minimize the bootstrapped cross-entropy
loss [35].

Panoptic Segmentation Head: The panoptic segmenta-
tion head predicts per-pixel classification for stuff classes and
instance-level classification for thing classes. The panoptic
outputs are generated by merging the semantic segmentation
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Fig. 3: Semantic segmentation architecture. The PSP Module cap-
tures context information at the lower scales of the FPN pyramid.
Multiple upsampling stages interleaved with convolutions follow
at each level. The semantic segmentation output is 1/2 from the
original image resolution.

logits and the instance segmentation logits predicted by the
two corresponding heads. Figure 4 illustrates the fusion
process.

Let us denote S the semantic segmentation logits with
S € RCseq xHXW C'seq represent the number of the semantic
segmentation classes, while H and W are the size of the
semantic segmentation logits, in our case % of the original
image scale. The segmentation classes Cs., contain both
thing and stuff classes along a void class for the ignored
pixels in training: Cyseg = Citurs + Cihing + 1.

The instance segmentation head produces a logit tensor 7'
with T' € RCinstXCtning X H'xW' [ gyr case, we use a Mask
R-CNN type of instance segmentation head with H' = W' =
28 and C},s; are the number of instances in the image.

The panoptic segmentation head predicts the semantic
class for stuff classes and the instance IDs for thing classes,
following the design choice in [42]. The panoptic logits P
have the form P € RCsturs+CinseXHXW where Cypppp is
the number of semantic classes for the stuff pixels and Cj,,s¢
represents the number of instances in the image and has a
different value for each image.

PANOPTIC STUFF: In order to build the panoptic seg-
mentation logits, we employ the output of the semantic
segmentation head and the instance segmentation head.
The first Cyt 75 channels in the panoptic output represent
background features. To refine the semantic segmentation
channels corresponding to stuff classes and decrease the
prominence of thing classes we introduce contextual cues
guided by the instance masks. We construct a mask tensor
with all the instance masks from the image by taking the
output of the instance segmentation head, which is Cj,st
masks of size 28 x 28 and upsampling the masks to their scale
in the original image and paste them to their corresponding
location in the H x W map. After that, we apply a ReLU
activation to enhance instance masks features. Finally, from
each stuff channel of the semantic segmentation logits we
subtract the activated upsampled instance map.

PANOPTIC INSTANCES: The panoptic instance logits have
the same size as the number of instances in the image
Cinst. On each channel we have the mask of an instance
obtained from the combined output logits of the semantic
and instance segmentation head. The instance segmentation

Nstuff xHX

TXHXW W

+ —> |—* Rely —> . —— (N stuff + N) x HX W

mask logits
o global
Nx28x28 pooling
D—~ upsample&paste — X |—> &+ —1— + —> conv1x1
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N xHXW
x
X

+
panoptic segmentation
Eimnxnxw logits

Fig. 4: Panoptic head. Panoptic masks logits are constructed by
adding the instance masks logits with the semantic logits. Sampling
locations in the object bounding box are determined by prominent
features from the semantic logits at category level.

Semantic segmentation logits binary mask with
sampling locations
SxHXW NxHXW

argmax & filter

—
by category

bounding boxes

(N'stuff+ N) X HX W

masks are sampled over a low-resolution 28 x 28 grid and
after upsampling, the masks display coarser boundaries,
especially for very large objects. On the other hand, the
semantic segmentation masks are more precise, therefore we
create the panoptic instance outputs from the instance masks
sampled by the semantic segmentation logits. We construct
the panoptic instance logits in the following way: for each
instance ¢ detected by the instance segmentation head, we
determine its semantic classI D and its semantic category
cat (vehicle, person, two-wheeled). Next, we sample the
most prominent features from the semantic segmentation
logits corresponding to its category in the object bounding
box to obtain B;, i.e., we take max along channel dimension
from S where argmax € C.q; and C.,; represent the classes
belonging to a category. Using the same sample locations, we
take the corresponding mask logits U; from the upsampled
mask at channel class ID Tijuss7p, Where U; € RIXHXW,
The final panoptic output for instance ¢ with ¢ € Cj,s is
P; = B, + U;. We choose to take the activated pixels from
the semantic segmentation logits at category level and not at
class level, since semantic segmentation sometimes fails in
classifying pixels of different thing classes (e.g. bus, truck)
but belonging to the same category (e.g. vehicle).

Panoptic logits belonging to both stuff and thing classes
are then passed through an attention module. We want to
model the dependencies between instance masks and re-
weight background channels in order to enhance relevant
classes and reduce the weight of the others. First operation
in the attention module is the global average pooling which
captures global context for each channel. Then, a [1 X 1]
convolution models the dependencies between channels. Fi-
nally, a sigmoid activation is applied and the panoptic logits
are scaled by the attention vector.

B. Implementation Details

Training setup: We implement our model in PyTorch
[32] and train it on a system with 4 GPUs. We train the
model end-to-end with a single optimization step. We train
and test our implmentation on the Cityscapes dataset. Each
mini-batch has 1 image/GPU. The images are augmented by
random horizontal flipping and scaling with the shorter edge
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randomly sampled from [800,1024]. We choose stochastic
gradient descent (SGD) as optimizer with momentum 0.9,
weight decay le — 4 and a “poly” learning rate policy
starting from a base learning rate of le — 2. Our model
converges in 12k iterations. Layer normalization is done
with Group Normalization [41] layers, which are invariant to
batch size. In all our experiments, we initialize the network
from available pretrained weights for bounding box detection
and classification and instance mask detection [11] on the
Microsoft COCO dataset [26]. We note that the semantic
segmentation head and the panoptic segmentation head are
not initialized, therefore are trained from scratch. Our final
loss is computed as follows: L = L.s + Lpox + Limask +

Lseg + Lpan~
Panoptic Segmentation Training: The panoptic
segmentation logits during training will be P €

RCstusstCinse XHXW  * \where (s are the number of

ground truth masks, Csy, f¢ is fixed during both training and
inference and H and W are half of the original image scale.
The panoptic logits of thing objects are built as follows:
each ground truth mask is associated to a predicted mask
with the highest bounding box intersection over union. The
class of the predicted mask is considered the class of the
ground truth. The order of the panoptic logits for instance
channels is the same as the order used to construct the
panoptic segmentation ground truth. The obtain the final
panoptic predictions we apply softmax over the panoptic
logits and minimize the bootstrapped cross entropy loss
during training.

Panoptic Segmentation Inference: During inference,
Cinst Will be the number of instances in the image after
a few filtering operations on the bounding box and masks
predictions from the bound box detection and instance mask
heads. First, class-agnostic non-maxima supression with a
IoU of 0.5 is applied on the predicted bounding boxes to
resolve overlaps. Next, we sort the remaining boxes and
filter out the ones whose confidence score is lower than 0.6.
Then masks with a large class-wise overlap are removed. If
the non-overlapping number of pixels over the total number
of pixels is lower than 0.5, the mask is discarded. Finally,
small stuff areas in the image are that have an area lower
than a threshold is set to void. The threshold used in our
experiments is 100. Softmax over the panoptic logits is
applied for obtaining per-pixel confidence scores. If the
maximum belongs to the one of the C;'t_u ¢ Channels then
the pixels receives the semantic class C?,, 7 While if the
maximum belongs to one of the ;¢ classes, then we have
an instance mask with instance ID equal to Cj,s and the
semantic class equal to the class of the instance mask used
to construct that panoptic output channel.

IV. EXPERIMENTS

In this section we provide experimental results on the
Cityscapes dataset and we discuss design choices and their
influence on performance.

Method AP mloU PQ
Mask-RCNN [12] 36.4 - -
o _PSPNetl43) I N E A
Unified baseline [16] 37.0 71.6 -

+ PSP + improved segmentation head | 37.8 73.3 -
+ baseline panoptic head 38.0 75.1 56.7
+ panoptic attention 38.1 753 56.9
+ panoptic background refinement 38.3 75.4 57.3

TABLE I: Ablation study. Instance, semantic segmentation and
panoptic segmentation results on the Cityscapes validation set. All
methods use a ResNet50 backbone. The mloU is computed from
the panoptic head if applicable.

A. Experimental Setup

Cityscapes Cityscapes [7] is a dataset of 5000 urban
scene images with pixel-level and instance-level annotations.
The dataset is split into 2975 train, 500 val and 1525 test.
Annotations are provided for 19 classes, from which 11 stuff
and 8 thing classes.

Evaluation metrics We evaluate semantic segmentation
using standard mloU (mean Intersection over Union) metric.
For instance segmentation the AP@][.5:.05:.95] (Average
Precision over classes and 10 IoU levels from 0.5 to 0.95
with a step size of 0.05 ) is used. For panoptic segmentation
we adopt the following metrics: PQ (Panoptic Quality), RQ
(Recognition Quality) and SQ (Semantic Quality).

B. Performance on the Cityscapes dataset

We evaluate our network with a ResNet-FPN backbone.
The backbone, the mask head and box head are pretrained
on the MS COCO [26] dataset. Our model is trained on the
fine train image set only and multi-scale testing is not used
in evaluation.

In Table I we present ablation study for the ResNet50-
FPN based network. Compared to Mask R-CNN for instance
segmentation and PSPNet for semantic segmentation we
observe an improvement for both tasks due to multi-task
learning. We compare our model to the baseline model based
on Mask R-CNN with a semantic segmentation head with
two [3 x 3] convolutions at each FPN level. Compared to the
baseline, introducing the PSP at lower FPN levels, employing
a different upsampling strategy and low-level features brings
a 1.7% improvement for mIoU. By introducing the panoptic
head, we can infer semantic segmentation logits which pro-
vide a 1.8% increase. The baseline panoptic head constructs
the panoptic logits by adding the semantic segmentation
logits and the instance segmentation logic [42]. The panoptic
attention module, background refinement and category level
logits selection improve the baseline with 0.6% in PQ.

In Table II, we analyze the influence of the panoptic head
in a multi-task setting. We observe that a lower quality se-
mantic segmentation can be improved at a low computational
cost with 3% to 5% by having a good classification and mask
detection from the instance segmentation branch.

In Figure 5, we present visual results for instance, se-
mantic and panoptic segmentation. We can observe that the
instance masks from the instance segmentation head have
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Fig. 5: Visual examples of panoptic segmentation. Each instance is colored with a different shade of the same color.

PQ SQ RQ AP mloU seg | mloU pan
449 | 753 | 569 | 355 60.1 64

48 76.7 | 604 | 37.2 63.6 67

49 76.8 | 61.5 | 384 64.7 69.6
50.8 | 77.6 | 63.6 | 36.6 68 71.3

TABLE II: The influence of the panoptic head on performance.
The quality of the semantic segmentation increases in some cases
with up to 5%.

a coarse boundary especially for large objects, nonetheless,
the detection and classification performance is good. On the
other hand, semantic segments boundaries are more precise,
but classification errors on thing classes are determined
by similar features for different classes belonging to the
same category. By extracting semantic segmentation from
the panoptic head, we can see an improvement both for
background and foreground classes. Classification at instance
level provided by the panoptic segmentation head propagates
the semantic information to each pixel in the mask, therefore
classification errors at pixel-level are corrected. In the panop-
tic segmentation image, the instance masks are better aligned
to objects and more precise compared the instance masks
from the instance segmentation head, due to adding more

context and background information. Moreover, background
classification is also improved due to the complementary
mask attention information. The visual results are validated
by the evaluation on the Cityscapes dataset from Table III.

In Table IV we compare our solution with state-of-the-
art models. Since panoptic segmentation is a relatively new
task there are only a few models evaluated on the Cityscapes
dataset. We note that Cityscapes does not have an evaluation
server for panoptic segmentation, therefore all our experi-
ments are done on the validation set. Compared to [22], we
achieve higher PQ, especially PQ”", suggesting that their
instance segmentation network performs worse than ours.
TASCNet and UPSNet employ a ResNet50-FPN backbone
for the network pretrained on MS COCO. Mask AP is
improved by 1% at the cost of reduced mIoU and PQ. One
reason for the lower mloU and PQ score would be that our
semantic segmentation and panoptic segmentation branches
are trained from scratch, while theirs is pre-trained on
COCO. We achieve comparable results in terms of mloU and
larger AP than PanopticFPN [15], which has a ResNet101
backbone pretrained on ImageNet.

Finally, as far as runtime is concerned, the network runs
in 252 ms on a 1024 x 2048 Cityscape image on an NVidia
GTX 1080Ti GPU.
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Semantic Head | 96.0 83.5 91.3 47.0 544 60.5 67.4 75.6 91.8 60.3 93.9' 80.8 56.3 93.9 67.9 76.8 65.2 53.8 744 | 73.3
T
Panoptic Head | 97.8 83.3 91.2 47.6 53.4 59.3 67.7 759 91.8 60.5 93.91 83.0 66.4 94.1 74.2 85.9 76.3 66.1 64.4| 754

TABLE III: Class mloU on Cityscapes validation set from semantic segmentation head and from panoptic segmentation head.

Method PQ | SQ | RQ [ PQ”" [ PQ5" | mloU | AP

Li e al. [22] 53.8 - B 05 62.1 71.6 | 286
PanopticFPN-ResNet101 [15] | 58.1 - - 52 62.5 75.7 33.0
TASCNet-COCO [21] 59.2 - - 56 61.5 778 | 376
UPSNet - COCO [42] 60.5 | 809 | 73.5 | 57.0 63.0 778 | 378
Ours - COCO 573 | 79.1 | 707 | 33.9 59.7 75.6 | 383

TABLE IV: Comparative study on the Cityscapes validation set.
Unless specified the model is pretrained on ImageNet, otherwise
on COCO. All models but PanopticFPN have a ResNet50-FPN
backbone.

V. CONCLUSION

In this work, we propose a unified framework for instance,
semantic and panoptic segmentation. The network is end-
to-end trainable, has a shared residual FPN backbone and
multiple heads for each task. The first contribution of the
paper is an improved semantic segmentation head on top
of the Feature Pyramid Network with Pyramid Pooling
Modules. The second contribution of our work is the design
of an improved panoptic head by a mask attention module
at background and instance level. The proposed network
heads bring improvements compared to the baseline and
the panoptic segmentation head refines the semantic output,
showing consistent increase in performance.
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