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Abstract— A powerful scene understanding can be achieved
by combining the tasks of semantic segmentation and instance
level recognition. Considering that these tasks are comple-
mentary, we propose a multi-objective fusion scheme which
leverages the capabilities of each task: pixel level semantic
segmentation performs well in background classification and
delimiting foreground objects from background, while instance
level segmentation excels in recognizing and classifying objects
as a whole. We use a fully convolutional residual network
together with a feature pyramid network in order to achieve
both semantic segmentation and Mask R-CNN based instance
level recognition. We introduce a novel heuristic fusion ap-
proach for panoptic segmentation. The instance and semantic
segmentation output of the network is fused into a panoptic
segmentation. This is achieved using object sub-category class
and instance propagation guidance by object category class
from semantic segmentation. The proposed solution achieves
significant improvements in semantic object segmentation and
object mask boundaries refinement at low computational costs.

I. INTRODUCTION
Semantic segmentation and instance recognition enable a

thorough understanding of the environment at image pixel
level. Semantic segmentation identifies the semantic class of
each pixel, while instance segmentation provides an object-
level representation by assigning instance labels to each
object pixel. Extensive research is carried out for solving
both tasks using deep convolutional neural networks. Most
solutions are built on dilated ResNet [14] and Fully Convo-
lutional Neural Networks (FCN) [29][3][44]. In the case of
instance segmentation, significant improvements have been
achieved by the Mask R-CNN framework [13] where a
Feature Pyramid Network [27] provides a multi-scale feature
representation for object detection and instance segmenta-
tion.

Semantic segmentation performs particularly well in the
case of background classes but struggles in recognizing
object subcategories or large-scale objects. Due to the fact
that classification is achieved at pixel level, an object may
receive multiple labels. In the case of Mask R-CNN, objects
are detected and classified as a whole and the class is
propagated to every pixel of the instance mask, hence an
object is assigned a unique semantic label. However, the
instance mask is computed at a lower resolution (28 × 28)
resulting in a coarser boundary for large-scale objects.

In order to alleviate the downsides we employ a unified
architecture consisting of a shared backbone and individual
network heads for each tasks, and propose a fusion scheme.
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Kirillov et al. introduce in [19] a novel task and data
format, the panoptic segmentation. It unifies semantic seg-
mentation and instance segmentation by requiring both se-
mantic class and instance ID for each individual pixel. The
authors in [19] also introduce a baseline heuristic approach
for generating the panoptic segmentation from semantic and
instance segmentation. The fused output starts from non-
overlapping instance segments, generated by a NMS-like
procedure, and combines it with semantic segmentation by
resolving any overlap between foreground and background in
favor of the foreground class (from instance segmentation).
The output fusion approach described in this paper is a
novel heuristic approach for generating panoptic segmenta-
tion from semantic and instance segmentation.

The main contributions of this paper are:
• improved semantic segmentation network head;
• novel output fusion heuristic approach for panoptic

segmentation.

II. RELATED WORK

State-of-the-art semantic segmentation methods use Fully
Convolutional Neural Networks (FCN) [29] for dense pixel
predictions. Classification networks usually learn features at
5 different scales, with the final layer having a 32x lower
resolution than the input. Consecutive striding is harmful for
the semantic segmentation task since the final segmentation
map is obtained by upsampling the last layer of the CNN.
In order to recover the resolution loss, several architectures
have been proposed.

Atrous convolutions have been extensively used for con-
trolling the resolution output [2][3]. The authors modified
the original ResNet [14] architecture by adopting dilated
(atrous) convolutions with various rates in the last or last two
residual blocks. Atrous convolutions enlarge the field of view
of filters by capturing multi-scale context without decimating
the resolution. Bilinear upsampling is applied on top of the
last layer to obtain the final segmentation map. An alternative
to atrous convolutions represents scale-adaptive convolutions
[43] which are capable of learning dilation rates.

Spatial Pyramid Network models are usually built on top
of a dilated FCN and add a Spatial Pyramid Module. In
PSPNet [44], this module encodes global information by
applying various size average pooling kernels at the last
layer. DeepLabV2 [2] introduces Atrous Spatial Pyramid
Pooling (ASPP) which performs parallel atrous convolutions
with different rates.

Encoder-decoder networks usually use a deeper and nar-
rower CNN for feature extraction and a more complex
decoder replaces bilinear interpolation. ENet [30] model
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learns the upsampling of low resolution features with decon-
volution layers. The network runs in real time at the cost of
reduced performance. ERFNet [33] obtaines better results by
employing a residual network with factorized convolutions.
SegNet [1] has a symmetric encoder-decoder architecture and
introduces the unpooling layer for upsampling. The U-net
model [34] uses shortcut connections from the encoder to
decoder to help recover object details and spatial information.

Another approach to capture multi-scale information is to
resize the input samples at different resolutions and use a
shared feature extractor [9]. The resulted feature maps at
different scales are aggregated with concatenation [26] or
attention models [4].

A perception system usually performs multiple tasks
such as semantic segmentation, object detection, instance
segmentation and others. Having separate models for each
task implies a very high computational cost and memory
footprint, which in most cases is infeasible. A solution to this
problem represents multi-task learning by having a shared
CNN model that learns to optimize the tasks simultaneously.
Since scene understanding can be achieved by perceiving
both semantic and structure information, combining com-
plementary tasks in a unified framework is beneficial for
each particular task. In [17], the authors design a CNN that
jointly learns semantic segmentation, instance segmentation
and depth regression and propose a new multi-task loss
which efficiently weights the loss of each task. UberNet [20]
trains in an end-to-end manner a CNN that addresses several
classification and regression tasks. [7] predicts depth, surface
normals and semantic labels using a single multi-scale archi-
tecture. MultiNet [37] enables real time applications such as
autonomous driving with a very efficient network, solving
vehicle detection and road segmentation. A top performing
framework for object detection and instance segmentation is
Mask R-CNN [13], which extends Faster R-CNN [32] with
an instance segmentation branch. The unified architecture
employs Feature Pyramid Network [27] to learn multi-scale
representations.

III. UNIFIED NETWORK ARCHITECTURE

In this work, we develop a unified network architecture
based on CNN which simultaneously performs object detec-
tion, instance segmentation and semantic segmentation. Our
goal is to design a model that can be trained end-to-end with
a single optimization step.

State-of-the-art semantic segmentation networks based on
ResNet usually employ atrous convolutions in the last two
residual blocks such that the final feature responses are
8x or 16x smaller than the input resolution. Classification
networks usually use a 32x downsampling factor, but the
authors in [3] [5] have shown that semantic segmentation
results are greatly affected by the signal decimation and
adopting a smaller downsampling factor such as 8x leads
to better performance at the cost of higher memory usage.
The winning entry of the COCO Stuff Challenge 2017 [28]
”ResNeXt-FPN” [18] proposed by team FAIR has shown
that a backbone network used for detection and classification

such as ResNeXt [41] with a 32x downsampling factor can
be successfully used to achieve state-of-the-art results in
semantic segmentation. We use as baseline ”ResNet-FPN”,
the ResNet variant of ”ResNeXt-FPN” solution for object
detection, instance segmentation and semantic segmentation,
and propose an improved semantic segmentation head.

A. Baseline model

The ”ResNet-FPN” baseline architecture is an extension
of the Mask R-CNN framework for object detection and
classification, and instance segmentation [13]. It is based
on a Feature Pyramid Network (FPN) [27] defined over a
ResNet [14][41] architecture. Mask R-CNN extends Faster
R-CNN [32], an object detection and classification network.
The Faster R-CNN detector consists of two stages: a Region
Proposal Network (RPN) and RoIPool. The RPN proposes
object candidates and the second stage extracts features using
these candidates and applies bounding box classification and
regression. Both stages use a shared feature representation
based on ResNet and Feature Pyramid Network. The 4-level
Feature Pyramid is built at the last layer of ResNet in a
top-down manner by upsampling feature maps from higher
pyramid levels and merging them via lateral connections
with corresponding feature representations from the ResNet
network. The process propagates coarser but semantically
stronger features to the more finer feature maps, therefore
each level of the pyramid will consist of more complex,
richer features. The RoIPooling stage extracts features from
different level of the pyramid according to scale. Mask R-
CNN adds a mask prediction branch on top of Faster R-CNN,
which outputs a binary mask for each RoI.

B. Segmentation head

For the segmentation task our model shares the same
feature representation based on ResNet-FPN used by instance
segmentation and object detection and classification as seen
in Figure 1. Since the elements in a scene appear at various
sizes depending on their distance to the camera, we find
very important that our models learns multi-scale features.
We employ multiple mechanism for addressing multiple
scales: the Feature Pyramid Network, atrous convolutions
and multiple image scales.

The baseline output of the FPN from Mask R-CNN [13]
consists of 256 feature maps at four scales: 1/4, 1/8,
1/16 and 1/32. At each of the four scales we add an
individual segmentation head in order to capture multi-
resolution features. Since segmentation represents a pixel-
level classification task we employ FCN on top of FPN
leyers. Dilated (atrous) convolutions are important tools for
extracting context and long-range information. Since the top
level features of the pyramid at 1/32 and 1/16 provide better
localization and stronger semantics we further incorporate
multi-scale information to the model by adopting an Atrous
Spatial Pyramid (ASP). Therefore, we apply an ASP [3]
for the segmentation heads at 1/32 and 1/16 by using one
1×1 convolution and three 3×3 dilated convolutions having
dilation rates of 6, 12 and 18. Each convolution is followed
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Fig. 1: A shared ResNet-FPN network is used for 3 tasks. The Faster-RCNN head performs object detection, Mask-RCNN
head performs instance segmentation. Our semantic segmentation head is based on Atrous Spatial Pyramid (ASP)

by a Group Normalization layer [39] which we found more
effective than Batch Normalization [15]. Batch normalization
is a very important component in CNN that accelerates
convergences by normalizing feature maps along the batch
dimension. A problem arises when using small batch size
and inaccurate batch statistics are computed, resulting in
an increase in model error. In this work, we have a small
batch size of 2 images due to GPU memory constraints.
Therefore, we prefer the alternative to Batch Normalization,
that is Group Normalization which is invariant to batch size,
since normalization is done along groups of channels. Each
Group Normalization layer is followed by a non-linear ReLU
activation. The resulting feature maps are concatenated and
passed through 128 1 × 1 filters. We note that we do not
use pooling operations as in [3], which would constrain the
model to a fixed input size, but instead we opt for multi-
scale inputs. From the 1/8 and 1/4 levels we extract features
of finer scales using two 3 × 3 convolutions as in [18]. At
each of the four scales, the segmentation heads generate 128
features maps. For a further refinement, the outputs are fused
in a pyramidal manner using a refinement pyramid (RP).
Starting with the highest scale layer, the feature maps are
upsampled two times and are added to the output of the
following layer. This way, the features from each layer learn
only the residues with respect to the higher-level layers. Next,
the fused outputs are upsampled and concatenated into 512
feature maps at 1/4. Finally, a 1× 1 convolution is used to
generate the class predictions.

To obtain the final segmentation predictions we use a per-
pixel softmax and minimize the multinomial cross-entropy
loss. During training, we optimize a multi-task loss defined
as: L = Lbox + Lcls + Lmask + Lsegm

C. Training and optimization

In this subsection, we provide details about the training
protocol. We train the model end-to-end with a single op-
timization step. We initialize our model with the pretrained
Mask-RCNN [13] weights on the Microsoft COCO dataset
[28] for the tasks of instance segmentation and object de-
tection and classification. We employ stochastic gradient
descent (SGD) with momentum 0.9 and a ”poly” learning
rate policy starting from 5e − 3. Our network converges in
32k iterations. As data augmentation, we adopt horizontal
flipping and multiple image scales (from 0.8 to 1) at training
time. Experiments were carried out on a system with 2
Nvidia 1080Ti GPUs with 2 × 11 GB memory. Due to
memory limitation, batch size was set to 2 images (1/GPU).
The original Mask-RCNN network uses Batch Normaliza-
tion, but since we have a very small batch size, we freeze
the Batch Normalization statistics and learn only the affine
parameters γ and β. Group Normalization is employed only
in the segmentation head.

IV. OUTPUT FUSION

We introduce a novel fusion approach for refining the
outputs of semantic and instance segmentation. Our goal
is to exploit the performance of FCN based pixel level
classification for more general classes and whole object level
based classification for instance classes. To achieve this, first,
we divide the pixels into foreground and background based
on the results from semantic segmentation. This partitioning
results also in fine foreground/background boundaries due to
stable pixel level classification.

Background In the case of background pixels we rely only
on the classification from semantic segmentation in order to
determine the semantic subclass of each pixel. In the case of
background classes recognition can be achieved also with a
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Fig. 2: Fusion process overview. (1) Input: semantic segmentation (car is partially classified as truck) and instance
segmentation (mask for car is slightly misaligned and cropped, and the pedestrian behind the car is not detected); (2)
Matching: the pixels of the instance segmentation are matched to the pixels from semantic segmentation only if the object
class is compatible with the semantic category from semantic segmentation; (3) Filling: semantic region growing is applied
to finalize the object shape and the unmatched object segments receive a new object ID; (4) Output: refined segmentation.

simpler classifier with a smaller receptive field that is able
to capture color and texture.

Foreground In the case of foreground pixels we use the
semantic segmentation to determine the semantic category of
each pixel. Note that semantic segmentation approaches gen-
erally perform well when segmenting at category level and
struggle at subcategory level [6]. To establish the semantic
subcategory of each foreground pixel we take into consid-
eration only the classification results from object detection
and use the instance segmentation mask in order to guide
a pixel-to-pixel matching. The class label and the instance
label of a pixel from object detection is retained only if it
is consistent with the semantic category of that pixel from
the semantic segmentation. The instance mask pixels that
correspond to background pixels or to a different semantic
subcategory are deleted. After the pixel-to-pixel matching it
is possible to have foreground pixels that were not covered
by object masks. In this case these pixels are matched to
the closest labeled pixel with direct semantic path. This
labeling extension can be achieved through a breadth-first-
search based region growing. This way, all pixels of an
object receive a unique class label resulting in a more stable
object level classification in comparison with pixel level
classification. The instance masks are aligned with a more
precise pixel level semantic segmentation, therefore having
better object boundaries. Note that in Mask R-CNN [13]
the masks are obtained using a convolutional neural network
defined over a grid of 28×28 sampled points. Due to the low
resolution of the sampling grid there can be misalignments
for the raw masks at the objects’ boundaries especially in
the case of large objects.

In the case of pixel segments that were labeled as fore-
ground but did not receive labels after region growing (due
to being isolated), we assign the semantic subcategory label
from semantic segmentation and generate a new instance ID.
This way we are able to extend the list of instances with
objects that were not initially detected. A threshold has to be
employed for the segment size in order to avoid the instance

Method backbone AP mask mIoU
Mask-RCNN [13] ResNet50 36.4 -

PSPNet [44] ResNet50-dilated - 71.7

Unified baseline ResNet50-FPN 37.0 71.6
+ ASP and RP ResNet50-FPN 37.2 72.9

+ fusion ResNet50-FPN 37.3 76.0

TABLE I: Instance and semantic segmentation results on the
Cityscapes VALIDATION set. Our model is trained only on
the fine Cityscapes training set and no test-time augmentation
was used.

labeling of small foreground noise segments. The steps of
the fusion process are illustrated in Figure 2.

The output fusion scheme can be applied for any seman-
tic segmentation and instance segmentation output without
depending on the employed approaches. It can be used as a
fast post processing step.

V. EXPERIMENTAL RESULTS

We evaluate the proposed model on the Cityscapes dataset
[6] which provides semantic segmentation (19 classes) and
instance segmentation (8 classes) ground truth data for 5000
pixel-level annotated traffic scenes images. Evaluation for
semantic segmentation is performed using the standard aver-
age Intersection-Over-Union (IoU) metric, while for instance
segmentation Average Precision (AP) is used.

The experiments were carried out using the Detectron
[12] framework. We train our models with a ResNet50-FPN
backbone from [12] that was pretrained for object detection
and mask prediction on MS COCO.

In Table I we present the results for our ResNet50-FPN
based solution on Cityscapes validation set. Due to multi-
objective learning, we observe an improvement of both in-
stance segmentation and semantic segmentation with respect
to state-of-the-art ResNet50-based Mask R-CNN [13] and
PSPNet [44] solutions. Compared to the baseline, that uses
two 3 × 3 convolutions for the segmentation head of each

3472



Fig. 3: Demo results for fusion based semantic and instance segmentation refinement
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ResNet50-FPN+ASP 97.7 82.3 91.2 48.6 51.3 56.9 66.9 73.1 91.5 61.8 93.1 80.1 59.8 93.1 63.0 77.5 64.1 59.7 75.3 72.9

ResNet50-FPN+ASP+fusion 97.7 82.3 91.2 48.6 51.3 56.9 66.9 73.1 91.5 61.8 93.1 81.0 65.6 94.0 81.6 89.8 80.1 61.9 75.6 76.0

TABLE II: Class mIoU on Cityscapes VALIDATION set before and after fusion

layer, the Atrous Spatial Pyramid (ASP) and the refinement
pyramid (RP) bring an improvement of approximately 1.5%
in mIoU for semantic segmentation. The fusion scheme
provides a further increase of 3% for semantic segmenta-
tion. The semantic segmentation for foreground classes is
improved due to a more robust object level classification
and the use of a unique label per instance. Moreover, the
instance masks are better aligned with objects. The output
fusion module also generates output in the form of panoptic
segmentation as seen in Figure 4.

In Figure 3 we present demo results for semantic and
instance segmentation before and after fusion on Cityscapes
validation images. In the case of semantic segmentation it
can be seen that the pixel level classification can result in
erroneous semantic labels for larger scale difficult objects,
such as buses, trams or trucks. These errors are corrected
after the fusion process due to the use of the object level
classification results for the foreground classes. In the case
of instance masks the improvements are more visible at the
object boundaries due to the better alignment and preser-
vation of details. The improvements are confirmed also by
the results from Table II. A significant improvement in IoU
is achieved in the case of large scale semantic classes for

Method mIoU class
DeepLabv2-CRF [2] 70.4
Deep Layer Cascade [23] 71.1
ML-CRNN [8] 71.2
Adelaide context [25] 71.6
FRRN [31] 71.8
LRR-4x [11] 71.8
RefineNet [24] 73.6
FoveaNet [22] 74.1
Ladder DenseNet [21] 74.3
PEARL [16] 75.4
Global Local Refinement [42] 77.3
SAC multiple [43] 78.1
SegModel [36] 79.2
TuSimple [38] 80.1
Netwarp [10] 80.5
ResNet-38 [40] 80.6
PSPNet [44] 81.2
DeepLabV3 [3] 81.3
Mappilary [35] 82.0
DeepLabV3+ [5] 82.1
Proposed - ISS-Fusion 72.7

TABLE III: Cityscapes results on the TEST set

3473



Fig. 4: Panoptic segmentation by unifying semantic and instance segmentation

example truck, bus and train.
In Table III we provide a comparison with other ap-

proaches based on the performance on the Cityscapes test
set. The proposed solution provides competitive results.
Currently it is outperformed by solutions that use larger
backbone networks such as ResNet101 which were trained
using large batch sizes. Unfortunately, larger backbone net-
works increase computational costs and memory require-
ments. The network for semantic segmentation can be trained
with image crops, but in the case of object detection and
instance segmentation full images are preferred. Training
with 2048 × 1024 pixel Cityscapes images is possible only
with a single image per GPU. For our experiments we used
two GPUs for training, however a batch size of 2 images
can result in an unstable stochastic gradient descent during
training. In order to further improve the results it is important
to explore robust and memory efficient architectures, that
would enable training with large batch sizes.

The execution time of the fusion scheme is 3 ms on a
Nvidia GTX 1080Ti GPU. It is a fast post processing step
which is achieved by linear parsings of the outputs.

VI. CONCLUSION

In this work, we propose a solution for improving both
semantic segmentation and instance segmentation using a
unified end-to-end learnable deep neural network architec-
ture. The first contribution of the paper is an improved
semantic segmentation network head based on Atrous Spatial
Pyramids. The second contribution relies in a novel output
fusion scheme for generating a panoptic segmentation that
propagates instance labels based on semantic segmentation.

The proposed solution provides improvements at low com-
putational costs for both tasks.
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