
Efficient Instance and Semantic Segmentation for Automated Driving

Andra Petrovai and Sergiu Nedevschi

Abstract— Environment perception for automated vehicles is
achieved by fusing the outputs of different sensors such as
cameras, LIDARs and RADARs. Images provide a semantic
understanding of the environment at object level using instance
segmentation, but also at background level using semantic seg-
mentation. We propose a fully convolutional residual network
based on Mask R-CNN to achieve both semantic and instance
level recognition. We aim at developing an efficient network
that could run in real-time for automated driving applica-
tions without compromising accuracy. Moreover, we compare
and experiment with two different backbone architectures,
a classification type of network and a faster segmentation
type of network based on dilated convolutions. Experiments
demonstrate top results on the publicly available Cityscapes
dataset.

I. INTRODUCTION

Automated vehicles must sense and understand their sur-
roundings using a variety of sensors in order to be able
to navigate in the complex traffic environment. A vehicle
performs multiple tasks: it localizes itself on the map, it
identifies all traffic participants, dynamic and static elements
of the scene, and understands their movement and finally, it
plans a route which is safe and obeys traffic rules. Automated
vehicles usually perform sensor fusion based perception,
based on cameras and LIDARs for example. A multi-
sensor setting is more powerful than using only one sensor,
providing richer and more accurate information due to the
complementarity of sensors. In this work, we focus on image
based recognition, but the results can be further fused with
the outputs of other sensors for a complete understanding
of the environment. 2D object detection and classification
is robust due to the detailed appearance information that is
present in the image. Moreover, it is easier to handle crowded
scenarios and tackle difficult occlusion cases, often met in
the complex traffic scene. We can approach sensor fusion
based perception from a low-level perspective where fusion is
performed at point/pixel level. Semantic image segmentation
identifies the label of each pixel but cannot distinguish be-
tween instances of the same class. By fusing semantic image
segmentation with the 3D point cloud we obtain a semantic
point cloud where each 3D point has a semantic class. This
provides a low level representation of the environment, where
clustering methods could be used to detect and distinguish
between different objects based on class and 3D position.
Another approach to 3D object detection would be a high-
level sensor fusion perception based on object detection and
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instance segmentation from image and 3D point cloud. By
fusing the instance segmentation image with the 3D point
cloud, each 3D object point has a semantic class and instance
ID so we can directly detect and classify 3D objects.

In this work, we tackle the first task of the high-level sen-
sor fusion based perception, which is semantic and instance
image segmentation, using the Mask R-CNN framework.
Lately, the research community has given attention to both
tasks and proposed solutions using deep convolutional neural
networks (CNN). Each task has its own architecture partic-
ularities. In the case of semantic segmentation, Fully Con-
volutional Neural Networks (FCN) [24][4][33][31] extract
features using dilated residual blocks in order to preserve
a higher output resolution. On the other hand, instance
segmentation state-of-the-art results have been achieved by
the Mask R-CNN framework [13] where a Feature Pyramid
Network [22] provides a multi-scale feature representation
for object detection and instance segmentation.

In this paper, we introduce and compare two types of
convolutional neural networks for feature extraction in the
Mask R-CNN framework. First, we explore a classification
type of network with a 32× downsampling factor. State-of-
the-art solutions for semantic segmentation have shown that
the results are greatly affected by this large downsampling
factor due to the signal decimation, therefore dilated ResNet
architectures have received much attention for solving this
task. Therefore, we introduce and experiment with a much
faster segmentation type of network that is based on 1D fac-
torized dilated convolutions. Semantic segmentation results
improve using this fast network and are comparable to a
much deeper architecture of Mask R-CNN while running at
least 4 times faster. Moreover, we make a comparative study
of the two architectures. Experiments using the two types
of architectures have been carried out on the challenging
Cityscapes [7] dataset consisting of urban driving scenarios.

II. RELATED WORK

State-of-the-art semantic segmentation methods use deep
learning for dense pixel prediction. Convolutional neural
networks (CNN) have been extensively used for the clas-
sification task and Long et. al adapted them for semantic
segmentation by introducing the Fully Convolutional Neural
Network (FCN) [24]. One of the major benefits of the
FCN is that it removes the fixed input size precondition
by completely excluding the fully connected layers. Top
performing methods have brought multiple improvements
to the Fully Convolutional Neural Network architecture by
using context modules [3], spatial pyramid pooling [33]
or atrous convolutions [4]. Other solutions aim to improve
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semantic segmentation results with multi-task learning [16],
where a shared representation is used to learn multiple tasks,
for example: detection, semantic segmentation, instance seg-
mentation and depth regression. A unified CNN architecture
improves the performance of each separate task [2] since
one task can leverage features learned by other tasks. In the
following, we review two types of semantic segmentation
solutions based on Fully Convolutional Neural Networks:
single models specialized for semantic segmentation and
unified architectures for multi-task learning.

A. Semantic segmentation architectures

Fully Convolutional Neural Networks (FCN) compute fea-
tures by applying multiple convolutions. Since it is compu-
tationally unfeasible to learn features at original resolutions,
strided convolutions and pooling layers are used to reduce
feature maps size. Typically, a CNN trained for the task
of classification learns features at 5 different scales, with
the final layer having a 32× lower resolution than the
input. On one hand, downsampling feature maps brings the
benefit of being able to better capture contextual information,
on the other hand consecutive striding is harmful for the
semantic segmentation task since the final segmentation map
is obtained by upsampling the last layer of the CNN. In order
to recover the resolution loss, several methods have been
proposed.

Scale-controlling convolutions Atrous convolutions have
been extensively used for controlling the resolution output
[3], [4]. The authors modified the original ResNet [14] archi-
tecture by adopting dilated (atrous) convolutions with various
rates in the last or last two residual blocks. Atrous convolu-
tions enlarge the field of view of filters by capturing multi-
scale context without decimating the resolution. Therefore, in
a dilated FCN, the output resolution is typically 8× or 16×
lower than the input size. Bilinear upsampling is applied on
top of the last layer to obtain the final segmentation map.

An alternative to atrous convolutions represents scale-
adaptive convolutions [32]. The authors overcome the prob-
lem of fixed-size receptive fields by introducing adaptive
convolutions which are capable of learning dilation rates.

Spatial Pyramid Network These types of models are
usually built on top of a dilated FCN and add a Spatial
Pyramid Module. In PSPNet [33], this module encodes
global information by applying various size average pooling
kernels at the last layer.

DeepLabV2 [3] introduces Atrous Spatial Pyramid Pool-
ing (ASPP) which performs parallel atrous convolutions
with different rates. The resulting feature maps at different
scales are concatenated and then bilinearly upsampled to the
original resolution.

Spatial Pyramid Networks have shown outstanding results
on multiple benchmarks [7], [10] by capturing context and
multi-scale information.

Encoder-Decoder Networks using Atrous Convolutions
and Spatial Pyramids have a large memory footprint due to
the fact that features maps are generated at higher resolu-
tions. Therefore, a simple bilinear interpolation operation is

used to recover the original resolution. On the other hand,
encoder-decoder networks usually use a deeper and narrower
CNN for feature extraction and a more complex decoder
replaces bilinear interpolation. The ENet [25] model has a
lightweight encoder and deconvolution is used to learn the
upsampling of low resolution features. The network runs in
real time at the cost of reduced performance. ERFNet [27]
achieves a better trade-off between high quality results and
low computational costs by employing a residual network
with factorized convolutions and deconvolutional layers.
SegNet [1] has a symmetric encoder-decoder architecture
and introduces the unpooling layer for upsampling, which
transfers maxpooling indices from the encoder module to
the decoder. The U-net model [28] uses shortcut connections
from the encoder to decoder to help recover object details
and spatial information. Encoders are usually based on the
ResNet architecture as in RefineNet [20], [31] or on the
DenseNet architecture [19] [15]. Encoder-decoder models
achieve outstanding performance by learning the upsampling
layers.

Image pyramid Another approach to capture multi-scale
information is to resize the input samples at different reso-
lutions and use a shared feature extractor [11]. The resulted
feature maps at different scales are aggregated with concate-
nation [21] or attention models [5].

B. Multi-task learning

A perception system usually performs multiple tasks
such as semantic segmentation, object detection, instance
segmentation and others. Having separate models for each
task implies a very high computational cost and memory
footprint, which in most cases is unfeasible. A solution to this
problem represents multi-task learning by having a shared
CNN model that learns to optimize the tasks simultaneously.
Since scene understanding can be achieved by perceiving
both semantic and structure information, combining comple-
mentary tasks in a unified framework is beneficial for each
particular task. In [16], the authors design a CNN that jointly
learns semantic segmentation, instance segmentation and
depth regression and propose a new multi-task loss which
efficiently weights the loss of each task. UberNet [18] trains
in an end-to-end manner a CNN that addresses several classi-
fication and regression tasks. Another solution in [9] predicts
depth, surface normals and semantic labels using a single
multi-scale architecture. MultiNet [30] enables real time
applications such as autonomous driving with a very efficient
network, solving vehicle detection and road segmentation. A
top performing framework for object detection and instance
segmentation is Mask R-CNN [13], which extends Faster R-
CNN [26] with an instance segmentation branch. The unified
architecture employs the Feature Pyramid Network [22] to
learn multi-scale representations.

III. UNIFIED NETWORK ARCHITECTURE

In this section, we introduce our unified network archi-
tecture for object detection and classification, instance and
semantic segmentation. It consists of a shared backbone
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for feature extraction based on residual layers and multiple
network heads for each task. The network can be trained
end-to-end with a single optimization step.

A. Shared backbone for feature extraction

We experiment with two types of backbone architectures:
one which is usually used in classification networks and one
based on dilated convolutions used in semantic segmentation
networks. Classification networks based on ResNet compute
feature responses at multiple scales and usually use a 32×
downsampling factor. In [3][4] the authors have shown that
using such a large factor degrades the performance of seman-
tic segmentation, because of losing feature map details that
could not be recovered. Therefore, they propose a network
architecture with different dilation rates in the last residual
blocks, which preserves important feature information and
captures context.

The winning entry of the COCO Stuff Challenge 2017
[23] ResNeXt-FPN [17] proposed by team FAIR has shown
that a backbone network used for detection and classification
such as ResNet with a 32× downsampling factor can be suc-
cessfully used to achieve state-of-the-art results in semantic
segmentation. For the classification type backbone feature
extractor, we use as baseline the ResNet50-FPN network
proposed in [8].

State-of-the-art semantic architectures use dilated residual
blocks. Although dilated convolutions improve performance
for semantic segmentation, it comes at the cost of higher
memory usage and higher execution times. Computational
resources are an important factor when developing intelligent
vehicles applications, considering that the algorithms must
run in real time on low power hardware with limited memory.
Therefore, we shift our attention to efficient networks such
as ERFNet [27] that achieves a good trade-off between
accuracy and efficiency by leveraging residual blocks with
1D factorized convolutions.

1) Classification type of network: The first backbone net-
work that we develop is based on the baseline ResNeXt-FPN
FAIR architecture. ’ResNeXt-FPN’ takes the Mask R-CNN
framework for object detection and instance segmentation
and extends it with a segmentation head. For the feature
extraction stage, we employ ResNet50 [14], a 50 layer
convolutional neural network with residual connections. A
Feature Pyramid Network [22] is built in a top-down manner,
starting with the last layer of the residual network by upsam-
pling feature maps and merging them via lateral connections
with corresponding features from the residual network. The
process propagates coarser but semantically stronger features
to the more finer feature maps, therefore each level of the
pyramid will consist of more complex, richer features. On
top of the shared backbone, we employ 3 networks heads. A
Faster R-CNN detection and classification head consists of
a Region Proposal Network (RPN) which generates Regions
of Interest (ROIs) for each of the 5 levels of the Feature
Pyramid Network. The ROIAlign layer extract features from
ROI candidates having the largest objectness score and a
bounding box classification and regression network outputs

the final predictions. Mask R-CNN adds a mask prediction
head by taking the top N predictions from the Faster-RCNN
branch and learning a binary mask encoding the object for
each bounding box.

For the segmentation head we adopt the network proposed
in [8]. To capture multi-scale information, Atrous Spatial
Pyramids with dilation rates 6, 12 and 18 are employed at
the top layers of the FPN. The smaller resolution responses
at 1/32 and 1/16 provide better localization and stronger
classification while lower level layers capture scene details.
Two 3× 3 convolutions extract features at finer scales from
1/8 and 1/4. Then, at each level of the pyramid, we perform
upsampling to reach the largest resolution. Feature maps are
summed in a pyramidal manner and concatenated to obtain
the final 512 feature maps. A 1×1 convolution will give the
final logits.

2) Segmentation type of network: When designing the
second backbone, we start from the state-of-the-art seman-
tic segmentation networks architectures. Best performing
architectures use dilated convolutions in the last residual
blocks, which help in capturing context, while at the same
time they keep the final output resolution 8 times or 16
times smaller than the input image. Keeping high reso-
lution feature responses is important in order to preserve
detail information which makes it easier to recover spatial
dimension and object boundaries. We develop an efficient
encoder-decoder architecture based on ERFNet [27] where
the encoder network computes features at different scales
and the decoder network combines the features to obtain a
higher resolution representation. The building block of the
ERFNet architecture represents the factorized residual layer.
The authors redesign the non-bottleneck residual module by
decomposing the 2D kernels into a linear combination of
1D kernels. A 2D non-bottleneck residual block sequentially
stacks 3 × 3 convolutions and has a residual connection
with the input of the module. The 1D non-bottleneck design
transforms each 3× 3 convolution into two 3× 1 and 1× 3
convolutions. This factorization results into fewer parameters
with a reduction of 33% in the case of a kernel size of 3. The
memory footprint is reduced and the computational efficiency
is increased, while achieving high accuracy similar to more
complex models. The encoder computes features maps at 3
resolutions by layering residual 1D non-bottleneck blocks
with downsampling modules. On one hand, downsampling
loses detail information from the image needed by the
decoder to recover the semantic data but on the other hand,
computation is more efficient on lower resolutions and deeper
layers are important for capturing context. To achieve top
accuracy, ERFNet’s encoder avoids signal decimation by
having an output resolution 8 times smaller than the image
and captures long-range information especially important for
classification of large objects by interleaving dilated 1D non-
bottleneck blocks. We build a Feature Pyramid Network on
top of the last layer by applying dilated convolutions with
dilation 4 and stride 4 resulting in a 32× smaller feature map
and another dilated convolution with dilation 2 and stride 2
resulting in a 16× smaller feature map. Since the dilation
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Fig. 1. Network architecture comparison between a ResNet50-based Mask R-CNN and ERFNet-based Mask R-CNN

rate is equal to the stride, this ensures subsampling features
with equal rate.

We develop a lightweight decoder which upsamples fea-
ture responses to original image size by learning upsampling
layers. The decoder actually represents the semantic segmen-
tation head and is connected to the last layer of the Feature
Pyramid Network at resolution 1/4. Two non-bottleneck
blocks are interleaved between deconvolution layers which
upsample the responses to the original image resolution.

B. Training and optimization

We provide training and optimization details for both
architectures. Network training was carried out on a system
with 2 NVIDIA GTX 1080Ti GPUs, each with 11 GB of
memory.

1) Classification backbone: The Mask R-CNN solu-
tion based on ResNet50-FPN is initialized from pretrained
weights on Microsoft COCO [23] dataset for object detec-
tion and instance segmentation. We use stochastic gradient
descent (SGD) as optimizer with a polynomial learning rate
decay starting from 5e − 3. We train with 2 resolutions:
original 1024 × 2048 and 512 × 1024. We perform multi-
scale training where the shorter edge of an image is scaled
to a random choice from [800, 1024] for the original full
resolution. For the smaller resolution, the set of scales is
chosen from [416, 448, 480, 512]. We train for 32k iterations
using a batch size of 1 per GPU due to memory constraints
and a batch size of 3 per GPU for the smaller resolution.
In the backbone, we do not use Batch Normalization due
to small batch size and replace it with affine transformation
from freezed batch normalization parameters from pretrain-
ing. In the segmentation head, we use Batch Normalization.

2) Segmentation backbone: The Mask R-CNN solution
based on ERFNet-FPN is initialized from pretrained weights
on ImageNet [29] for image classification. Only the ERFNet
backbone is pretrained, the FPN and all heads are initial-
ized from a normal distribution. Training this backbone
is performed using Adam optimizer, with momentum 0.9,

weight decay 2e − 4 and we start from a learning rate of
5e−4. We employ a polynomial learning rate schedule. Since
only the backbone is pretrained, this network needs longer
training for 75k iterations. The ERFNet-FPN solution aims at
a decreased processing time without compromising results.
For faster runtime, the network was trained on a smaller
resolution. We use multi-scale training, where the smaller
edge of the image is resized from one of the following values
[416, 448, 480, 512]. A batch size of 8 images (4 per GPU)
is used in all our experiments. Batch normalization layers
are trained in the entire network.

IV. EXPERIMENTAL RESULTS

We evaluate the two proposed models on the Cityscapes
[7] dataset, which consists of 5000 high-resolution traffic
images with pixel level semantic segmentation for 19 classes
and instance segmentation for 8 object classes. The metrics
used for semantic segmentation evaluation are Intersection
Over Union (IoU) and for instance segmentation we use
mean Average Precision (mAP@[.5:.05:.95], Average Pre-
cision over classes and 10 IoU levels from 0.5 to 0.95 with
a step size of 0.05).

All experiments were performed in the PyTorch imple-
mentation of the Detectron [12] framework. We compare two
unified architectures for semantic and instance segmentation,
one is based on the classification type of network, ResNet50
and the other one is based on the segmentation type of
network, ERFNet. First, we train a Mask-RCNN solution
with ResNet50-FPN backbone that was pretrained on the
Microsoft COCO [23] and ImageNet [29] dataset. After
that, we train a Mask-RCNN solution with ResNet50-FPN
backbone for the smaller 512 × 1024 resolution pretrained
on ImageNet. Next, we train a Mask-RCNN solution with
ERFNet-FPN backbone that was pretrained on ImageNet
[29] dataset only.

First, we evaluate the semantic segmentation results ob-
tained using the unified network using images of different
resolutions. In Table I, we provide a comparison between
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ResNet50-FPN @ 1024x2048 97.7 82.3 91.2 48.6 51.3 56.9 66.9 73.1 91.5 61.8 93.1 80.1 59.8 93.1 63.0 77.5 64.1 59.7 75.3 72.9

ResNet50-FPN @ 512x1024 97.3 80.8 90.5 44.2 49.1 59.2 61.9 71.2 90 60 92.6 74.2 50.2 92.2 56 73.3 41.1 40.2 69.9 68.2

ERFNet-FPN @ 512x1024 97.3 80.4 90.4 47.8 50.7 60.3 61.9 72.3 90.9 59.7 92.4 75.5 54.1 92.4 60.6 77.4 57.9 40.4 70.1 70.1

TABLE I
SEMANTIC SEGMENTATION EVALUATION. CLASS MIOU ON CITYSCAPES VALIDATION DATASET, RESNET50-FPN TRAINED ON 1024× 2048 AND

512× 1024, ERFNET-FPN TRAINED ON 512× 1024 AND EVALUATED ON 1024× 2048 IMAGES.

 Original image Ground truth
Semantic 

segmentation 
using ResNet50-

FPN

Instance 
segmentation 

using ResNet50-
FPN

Semantic 
segmentation 

using ERFNet50-
FPN

Instance 
segmentation 

using ERFNet50-
FPN

Fig. 2. Demo results for semantic and instance segmentation for the two types of networks

Method mIoU class
DeepLabv2-CRF [3] 71.4
PSPNet [33] 78.4
DeepLabV3 [4] 79.3
DeepLabV3+ [6] 79.55
Ours - ResNet50-FPN@1024x2048 72.9
Ours - ERFNet-FPN@512x1024 70.1

TABLE II
CITYSCAPES RESULTS ON THE VALIDATION SET. MODELS TRAINED ON

THE TRAIN FINE SET.

the two different networks based on ResNet50-FPN and
ERFNet-50. Since we aim at obtaining lower execution time,
we train the ResNet50-FPN based solution at two resolutions:
the original 1024 × 2048 and the downsampled images at
512 × 1024. The reported results are evaluated at the full
1024 × 2048 resolution. Unless otherwise noted ResNet50-
FPN refers to a network trained on the smaller resolution.

Image resolution has a significant impact on the quality of
the results as we can observe in Table I. Using full resolution
for training, we obtain 72.9 IoU for semantic segmentation,
while using 4 times smaller images, the IoU decreases with
4.7%. ERFNet, on the other hand is a network tailored for
semantic segmentation by employing dilated convolutions
in the last layers for increased receptive field and for in-
formation preservation. ERFNet-FPN performs better than
ResNet50-FPN, having a 70.1 IoU.

In Table II we compare our solutions aimed at real-
time applications with other state-of-the-art methods on the
Cityscapes benchmark. Execution time is not specified for
the other implementations. We consider only results for
solutions trained on the train fine training set composed
of 5000 semantic annotated images. In order to develop a
fast network, we use more efficient building blocks such as
factorized residual convolutions, but we also decrease the
resolution of the input images. Table II shows that we can

2579



still obtain competitive results with a unified network no
matter the constraints against solutions that run in hundreds
of milliseconds or seconds.

Backbone AP det AP mask mIoU
ResNet50-FPN @ 1024x2048 37.2 36.4 72.9
ResNet50-FPN @ 512x1024 33.8 28.6 68.2
ERFNet-FPN @ 512x1024 31.1 27.7 70.1

TABLE III
OBJECT DETECTION, INSTANCE AND SEMANTIC SEGMENTATION

RESULTS ON THE CITYSCAPES VALIDATION SET. OUR MODELS ARE

TRAINED ONLY ON THE FINE CITYSCAPES TRAINING SET AND NO

TEST-TIME AUGMENTATION WAS USED. THE RESOLUTION INDICATES

TRAINING RESOLUTION.

In Table III, we evaluate all the 3 heads of our network.
We can observe that decreasing the resolution also affects
the object detection and instance segmentation results, since
small objects will be harder to be detected in the smaller
image. On the other hand, dilated convolutions prove to be
an efficient mechanism for capturing long range information,
improving the semantic segmentation. We can observe that
the network based on ResNet50 still performs better at object
detection and mask segmentation.

Backbone Run time (ms) AP mask mIoU
ResNet50-FPN @ 1024x2048 150 36.4 72.9
ResNet50-FPN @ 512x1024 55 28.6 68.2
ERFNet-FPN @ 512x1024 44 27.7 70.1

TABLE IV
RUN-TIME (MS) MEASURED FOR MASK-RCNN PERFORMING OBJECT

DETECTION, INSTANCE SEGMENTATION AND SEMANTIC SEGMENTATION

ON NVIDIA RTX 2080TI GPU

In Table IV, we measure the inference time of the net-
works. ERFNet-FPN solution is faster than the ResNet50-
FPN, while having significantly higher accuracy for seman-
tic segmentation. The segmentation results of ERFNet-FPN
trained on 512 × 1024 images are similar in accuracy with
ResNet50-FPN trained on full resolution, while ERFNet-
FPN network is more than 4 times faster. To be noted that
we only measure the forward time of the network and do
not consider pre-processing and post-processing operations
such as image normalization, bounding box non-maxima
suppresion or mask upsampling.

Component ERFNet-FPN (ms) ResNet50-FPN (ms)
Backbone 9 15

FPN 5 5
RPN 16 16

Box head 5 5
Segmentation head 5 10

Mask head 4 4

TABLE V
BREAK-DOWN OF RUNTIME IN MS FOR ERFNET-FPN BASED

MASK-RCNN AND RESNET-50 BASED MASK-RCNN FOR A

RESOLUTION OF 512X1024 ON NVIDIA RTX 2080TI GPU

We investigate the execution time of our proposed so-
lutions and break down the inference time per module, in
Table V. The Region Proposal Network is the most expensive
module, being followed by the backbone. The mask and box
head do not depend on the resolution of the input image since
RoiAlign will sample the same number of points regardless
of input resolution.

Moreover, we include some visual results for comparison
in Figure 2. The ResNet50-FPN network and the ERFNet-
FPN trained on 512 × 1024 input have visually similar
results for the instance segmentation task. It can be seen
that problems may appear for smaller objects for the instance
segmentation task, while erroneous pixel level labeling for
large objects for semantic segmentation may occur, resulting
in objects having multiple labels.

V. CONCLUSION
In this work, we propose two types of unified end-to-

end learnable deep neural network architectures for semantic,
instance segmentation and object detection and classification
based on the Mask R-CNN network. The contribution of
the paper relies in the development of a fast and efficient
network that can reach good accuracy, comparable to other
state of the art solutions. Moreover, we study and compare
two different backbone architectures suitable, one for classi-
fication and one for segmentation and present their benefits
and drawbacks in the context of a unified framework for 3
different tasks.
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