
 
Abstract-- Stereovision is a technique for range detection 

able to provide accurate 3D description of the environment 

in real time. In the last years due to the progresses in 

computer and camera technology the stereovision have 

became a robust alternative for environment sensing in 

driving assistance systems. The dense stereo sensor 

presented in this paper answers to the divers requirements 

of the urban scenario through a multitude of detection 

modules, built on top of a hybrid (hardware plus software) 

dense stereo reconstruction engine. The sensor is able to 

detect, track and classify clothoid and non-clothoid lanes, 

drivable areas in the absence of lane markings, cars, 

pedestrians and road maintenance signs. The hybrid 

stereovision engine and the proposed detection algorithms 

allow accurate sensing of the demanding urban scenario at a 

high frame rate being suitable for use in ADAS. The 

presented sensor is tested for precrash applications.  

 
Index terms—stereovision, ADAS, precrash 

 

I. INTRODUCTION 

 

Advanced driving assistance systems (ADAS) 

are a complex multidisciplinary research field, 

aimed at improving traffic efficiency and safety. A 

realistic analysis of the requirements and of the 

possibilities of the traffic environment leads to the 

establishment of several goals for traffic assistance, 

to be implemented in the near future (ADASE, 

INVENT, PREVENT, INTERSAFE) including: 

high-way, rural and urban assistance, intersection 

management, pre-crash. 

While there are approaches to driving safety and 

efficiency that focus on the conditions exterior to 

the vehicle (intelligent infrastructure), it is 

reasonable to assume that we should expect the best 

results from the in-vehicle systems. Traditionally, 

vehicle safety is mainly defined by passive safety 

measures. Passive safety is achieved by a highly 

sophisticated design and construction of the vehicle 

body. The occupant cell has become a more rigid 

structure in order to mitigate deformations. The 

frontal part of vehicles has been improved as well, 

e.g.  it  became  specially  designed  “soft” areas  to  

 

reduce the impact in case of a collision with a 

pedestrian. In the recent decades a lot of 

improvements have been done in this field. 

Similarly to the passive safety systems, primitive 

active safety systems, such as airbags, are only 

useful when the crash is actually happening, 

without much assessment of the situation, and 

sometimes against the well-being of the vehicle 

occupants. It has become clear that the future of the 

safety systems is in the realm of the artificial 

intelligence, systems that sense, decide and act. 

Sensing implies a continuous, fast and reliable 

estimation of the surroundings. The decision 

component takes into account the sensorial 

information and assesses the situation. For instance, 

a pre-crash application must decide whether the 

situation is of no danger, whether the crash is 

possible or when the crash is imminent, because 

depending on the situation different actions are 

required: warning, emergency braking or 

deployment of irreversible measures (internal 

airbags for passenger protection, or inflatable hood 

for pedestrian protection). While warning may be 

annoying, and applying the brakes potentially 

dangerous, deploying non-reversible safety causes 

permanent damage to the vehicle, and therefore the 

decision is not to be taken lightly. However, in a 

pre-crash scenario it is even more damaging if the 

protection systems fail to act. Therefore, it is 

paramount that the protection systems act when 

needed, and only when needed, a decision that 

cannot be taken in the absence of reliable sensor 

data. 

The sensorial systems for driving assistance 

(highway and urban) are today the focus of large, 

joint research projects, which combine active and 

passive sensors, GPS navigation, and telematics. 

Projects such as CARSENSE (www.carsense.org) 

INVENT (www.invent-online.de), PREVENT 

(www.prevent-ip.org), bring together car 

manufacturers and research partners for the 
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common goal of solving the driving assistance 

problem. 

In order to provide support for these applications, 

a sensorial system must provide an accurate and 

continuously updated model of the environment 

fitted for high level reasoning. The environment 

description should include: 

- Lane detection/ Lane parameters estimation 

- Navigable channel detection and channel 

parameters estimation in crowded environments 

- Vehicle detection and tracking 

- Detection of fixed (non-moving) obstacles 

- Pedestrian detection and tracking. 

There are many types of sensors that can be used 

for advanced driving assistance systems. The most 

known are: 

- Long range radar: with a range of 1 to 200 m, 

and a response time of around 40 ms, it is a highly 

accurate ranging sensor, with a narrow field of 

view, suitable for detection of radar-reflecting 

targets such as vehicles in highway environments. 

- Short/mid range radar: having a working range 

of 0-80 m, a fast response time, high accuracy and a 

medium width field of view, it is suitable for near 

range detection of vehicles in crowded urban 

scenarios. Both near range and far range radars 

have an increased reliability when detecting 

moving objects. 

- Laser scanner: a high precision ranging sensor, 

working in near or far distance ranges, it is not 

limited to the metallic surfaces like the radar, but 

has considerable difficulty with low albedo objects.  

- Monocular video sensors: employed in the 

visual or in the infrared light spectrum, the visual 

sensors can have a high field of view and can 

extract almost any kind of information relevant for 

driving assistance. The main problem of these 

sensors is that it cannot rely on accurate 3D 

information, having to infer it indirectly, usually 

poorly. 

A stereovision sensor adds the 3D information to 

the visual, thus becoming the most complex and 

complete sensor for driving assistance. It is capable 

of detecting any type of obstacle that falls inside its 

adjustable field of view, the road and lane 

geometry, the free space ahead, and it is also 

capable of visual classification, for pedestrian 

recognition. 

 

II. RELATED STEREOVISION WORK 

 

The stereovision-based approaches have the 

advantage of directly estimating the 3D coordinates 

of an image feature, this feature being anything 

from a point to a complex structure. Stereovision 

involves finding correspondents from the left to the 

right image, and the search for correspondence is a 

difficult, time demanding task, which is not free 

from the possibility of errors. Obstacle detection 

techniques involving stereovision use different 

approaches in order to make some simplifications 

of the classic problem and achieve real-time 

capabilities. For instance, [9] uses stereovision only 

to measure the distance of an object after it has 

been detected from monocular images, [10] detects 

the obstacle points from their stereo disparity 

compared to the expected disparity of a road point, 

[11] detects obstacle features by performing two 

correlation processes, one under the assumption 

that the feature is part of a vertical surface and 

another under the assumption that it is part of a 

horizontal surface, and comparing the quality of the 

matching in each of the cases. A stereovision 

system that uses no correspondence search at all, 

but warps images instead and then performs 

subtraction, is presented in [12]. 

Processing 3D data from stereo (dense or sparse) 

is a challenging task. A robust approach can prove 

of great value for a variety of applications in urban 

driving assistance. There are two main algorithm 

classes, depending on the space where processing is 

performed: disparity space-based and 3D space-

based. Most of the existing algorithms try to 

compute the road/lane surface, and then use it to 

discriminate between road and obstacle points. 

Disparity space-based algorithms are more 

popular because they work directly with the result 

of stereo reconstruction: the disparity map. The “v-

disparity” [11] approach is well known and used to 

detect the road surface and the obstacles in a 

variety of applications [12]. It has some drawbacks: 

is not a natural way to represent 3D (Euclidian) 

data, it assumes the road is dominant along the 

image rows, and it can be sensitive to roll angle 

changes. 

The 3D space algorithms have also become 

popular among the researchers in recent years. 

Obstacle detection and 3D lane estimation 

algorithms using stereo information in 3D space are 

presented in [5], [6], ego pose estimation 

algorithms are presented in [4] [3], and 

unstructured environment estimation algorithms are 

presented in [7] and [8]. 

 

 



III. DENSE STEREOVISION-BASED STEREO SYSTEM 

FOR URBAN DRIVING ASSISTANCE 

 

The Technical University of Cluj Napoca has 

been actively involved in the field of stereovision 

for driving assistance systems. A general geometry 

stereovision algorithm, based on software 

correlation around edge points, is described in [5]. 

This system was designed for high accuracy 

obstacle detection at large distances in highway 

scenarios, and it was later adapted for 3D lane 

detection, as described in [6].  

The urban traffic scenario proved to be way more 

complex that the highway, and the edge-based, 

software correlation-driven stereo system was not 

up to the task, due to the large processing time 

required by correlation, which left little time for 

more complex algorithms, and to the sparseness of 

the stereo data which proved to be insufficient for 

accurate discrimination between obstacles in the 

urban traffic environment. 

The solution to the urban traffic was the 

development of the dense stereovision-based 

algorithms [13].  

 

 
Fig. 1. The dense stereovision system 

architecture 

 

The hardware acquisition system (fig. 1) includes 

two cameras with 2/3” (1380x1030) CCD sensors 

and 6.5 mm fixed focal length lenses, allowing a 

horizontal field of view (HFOV) of 72 [deg]. The 

cameras are mounted on a rigid rig with a baseline 

of 320 [mm]. The images are acquired at full 

resolution with digital acquisition board with a 

maximum frame rate of 24 fps. 

The images are further enhanced by lens 

distortion correction and rectified in order to fulfill 

the dense stereo reconstruction requirements 

(canonical images). A down-sampling step is used 

to adapt the image size to the stereo processing 

board parameters (512 pixels width) and to 

minimize the noise introduced by the digital 

rectification and image correction. The whole 

process is reduced to an image warping approach 

performed in a single step (fig. 1) using reverse 

mapping and bilinear interpolation. 

The 3D reconstruction of the scene is performed 

using a dedicated hardware board. The input of the 

board consists in two rectified images and the 

output can be either a disparity or a Z map 

(expressed in the left camera coordinate system). 

Our system uses 3D points set for scene 

representation; therefore the preferred output is the 

Z map. Using the Z coordinate value, the X and Y 

coordinate can be computed and then transformed 

into the car coordinate system using the extrinsic 

camera parameters. 

With the current system setup a detection range 

optimally suited for the urban environments is 

obtained: 

-minimum distance:  0.5 m in front of the ego car 

(approximately 2.5 m in front of the cameras) – the 

near range distance is limited by the baseline, focal 

length and maximum disparity allowed by the 

hardware board. 

-delimiters of the current lane  (considered 

approximately of 3,5 m wide) are visible at 1.0 m; 

-reliable detection range: 0.5 … 35 m, with a 

maximum detection range (up to witch 3D points 

can be reconstructed) of 50 m 

-large horizontal field of view, 72 degrees 

a) 

 

b) 

  

Fig. 2. Depth map generated from stereovision.  

 

The stereovision system is used to provide two 

types of environment description: a structured 

description consisting of parametrical lanes, 

tracked cuboids, and pedestrians, and an 

unstructured description based on a dense elevation 



map with drivable and non-drivable areas, suitable 

for very difficult scenarios. 

 

IV. LANE DETECTION 

 

The lane detection system is organized as an 

integrator of multiple sensors. Instead of having 

multiple physical sensors, we have multiple 

detection stages, which all deliver results that will 

be used to update the lane model state parameters. 

The cycle begins with the prediction, and continues 

with all the detection algorithms, until the final 

update. When one algorithm updates the lane state, 

the resulted estimation becomes the prediction for 

the next stage. In this way, we can insert any 

number of algorithms into the processing chain, or 

we can temporary disable some of them, for testing 

or speedup purposes. 

The detection of the pitch angle and of the 

vertical curvature is done using the same 

stereovision-based algorithm that we have used for 

the highway scenario [6], adjusted for the distance 

range of the urban traffic. This step will mark each 

edge point that has 3D information associated to it 

as either “road point” or “above road point”. The 

road points are of interest in lane detection, the 

others are used for the obstacle detection routines. 

Lane Marking Point Extraction: together with 

edge detection, stereo reconstruction and 

road/above road labeling done by the vertical 

profile detection, the lane marking point extraction 

(classification) algorithm is part of the feature 

extraction methodology for urban lane estimation. 

This algorithm detects lane markings as pairs of 3D 

road points of similar in value but opposing in sign 

gradients, placed at the proper distance. This step is 

independent of the prediction, as it has to have 

universal, model-free application. 

The core of the model-based lane estimation 

process is the linear model matching. This 

algorithm fits two line segments (for the left and 

right lane border) to the perspective-projected road 

points, under several constraints that will ensure 

that these two segments are very likely to be the 2D 

projection of a section of the lane. First the linear 

matching is attempted to a range segment close to 

the ego vehicle, to ensure a minimum detection in 

restricted visibility conditions. If the near range 

linear model matching succeeds, the same 

algorithm is run for the next road section, in order 

to refine the estimation of curved roads. 

Free Form Left Border / Right Border Detection 

– These routines are independent of the model-

based prediction and of the linear model matching 

algorithms, but they rely heavily on the lane 

marking extraction results. Each lane border is 

estimated independently as a chain of 3D points. 

The results of these routines are used for updating 

the lane model parameters, but they can also be 

used as standalone output. 

A detailed description of the lane detection 

algorithms can be found in [14]. 

 

 
Fig. 3. Lane detection in urban environments 

 

V. OBSTACLE DETECTION AND TRACKING 

 

The obstacle detection algorithm receives the 

vertical road profile from road detection, and uses 

this profile to identify the obstacle points. The only 

3D points used by the obstacle detection algorithm 

are those situated above the road and below the 

height of the ego car. 

 

 
Fig. 4. Road points, relevant points for obstacle 

detection and irrelevant high points 

 

The local density and vicinity of the relevant 3D 

points is analyzed in a special compressed top view 

space. The compressed space keeps a constant 

density of the 3D points and neutralizes the error of 

the reconstructed depth. On the compressed space, 

a labeling algorithm is applied, on the cells with 

high density of points, determining the occupied 

areas. 

The occupied areas are fragmented into obstacles 

that are suitable for the cuboidal model. For this 

fragmentation, the visible shape (towards the 

camera) of the 3D points is analyzed and two 

criteria are used: the shape must have no 

concavities and the cuboid fitted on the shape must 

not contain significant free (drivable) space. 

The orientation of the obstacles is determined, 

when possible. 



Most of the processing is done on the 

compressed space which concentrates the useful 

information of the set of 3D points and leads to a 

fast computation. 

After the cuboids are generated, they are used as 

measurement in a model-based tracking algorithm. 

Tracking is initiated for objects that fit the size 

requirements for vehicles or pedestrians, and that 

have at least three consistent measurements from 

consecutive frames. The measurements are 

associated to the tracks corner by corner, partial 

associations and updates being allowed. This 

ensures a robust behaviour in case of occlusions 

and overtakes. 

 

 
Fig. 5. Tracked obstacles 

 

VI. PEDESTRIAN RECOGNITION 

 

The pedestrian recognition algorithm is applied 

to the cuboids resulted from obstacle detection. The 

following steps seem to be of interest at the 

moment: 

1.Simple form features extraction: The height of 

grouped objects and their base radius are simple, if 

not powerful features, that can be used for 

pedestrian detection, especially when rejecting too 

large or too small objects. These features are taken 

directly from the output of the grouping module. 

2.Tracking: coarse objects are tracked across 

multiple frames using a Kalman filter–based multi–

tracker. This step ensures stable detection and 

easier optical field computation (because of the 

inherent motion compensation resulting from the 

tracking). All tracked objects are considered as 

possible pedestrian candidates. 

3.Object speed extraction: From the tracker’s 

output, and knowing the ego vehicle speed, object 

speeds can be computed. Currently, we use 2 types 

of speeds for our classifier: one that is parallel to 

the ego vehicle’s axis, the longitudinal speed, and 

one that is perpendicular to the first. 

4.Depth Masks: Object masks are computed for 

all tracked objects. Only points for which their 3-D 

coordinates lie inside the tracked cuboids are 

considered. This step is important as it eliminates 

spurious background points and deals with partial 

occlusions. 

5.Optical Flow: A pyramidal, corner-based 

optical flow detection algorithm is used to compute 

optical flow in all corner points belonging to 

tracked objects. Only optical flow vectors starting 

and ending on non-masked points are considered. 

6.3-D Velocity: The true 3-D velocity of the 

considered points is computed, using the 2-D 

optical flow, stereo depth and frame time-stamps. 

7.PCA: Principal component analysis is used to 

find the principal direction of the 3D velocity field 

variation for each individual object. Variance is 

smoothed across frames, to increase its stability. 

We call the magnitude of this principal component 

a “motion signature”. This motion signature is 

much smaller for non–pedestrians as compared to 

pedestrians, and is thus a powerful feature for 

pedestrian detection. 

8.Motion History: Using tracking information, 

we record the motion signature across multiple 

frames, to determine its history 

9.Motion Spectrum: We compute the spectrum of 

the motion signature variation in time. Pedestrians 

display a typical periodic motion signature, while 

other types of objects display only impulsive noise.  

10. Bayesian Classification: A naive Bayesian 

classifier is used to combine the extracted features. 

The prior pedestrian probability is also an input of 

the Bayesian classifier. 

A detailed description of the approach is found in 

[15] 

  

 
Fig. 6. Pedestrian recognition results 

 

VII. UNSTRUCTURED ENVIRONMENT DESCRIPTION 

 

There are some urban scenarios where the 3D 

lane cannot be detected, especially when not 

enough lane delimiters exist (ex. road crossing). An 

alternative method must be used to detect elevated 

areas (obstacles), regions where the ego vehicle 

cannot be driven. Complementary, the obstacle-free 

road areas can be considered as drivable. 

The dense stereo engine usually reconstructs 

most of the road surface points even if lane 



markings are not present. Thus, the surface of the 

road can be computed by fitting a geometric model 

to the 3D data. A (bird-eye rectangular, 3x35 

meters) region of interest of the 3D space can be 

represented similar to a digital elevation map. An 

image of elevations is formed, with each pixel 

(cell) having the intensity proportional to the 3D 

height. If a cell has more than one 3D point, then 

the greatest height is used. Morphological dilation 

is used to fill voids and compensate for the 

perspective effect (the 3D space gets sparser with 

the depth). 

The road surface is fitted to the cell heights in a 

restricted region in front of the vehicle, where most 

of the 3D points belong to the road. The RANSAC 

technique is used for fitting.  

The final classification of the cells into 

drivable/non drivable areas is performed using the 

deviation of the height from the road model, using a 

height uncertainty measure computed from the 

stereo reconstruction uncertainties and the camera 

perspective model. A detailed description of the 

algorithms can be found in [8]. The elevation map 

and road are also used for curb detection, as 

described in [9]. 

 

 
Fig. 7. Drivable areas (blue), non-drivable areas 

(red) and curb areas (yellow) in a complex non-

structured environment 

 

VIII. ADAS APPLICATIONS OF THE DENSE STEREO 

SENSOR 

 

The dense stereovision system is able to detect 

all visible obstacles. The measurement error is 

dependent on the distance, ranging from 0.1 m for 

close objects to 1 m for the objects near the limit of 

the detection range (40 m with the 72 degrees wide 

field of view). The reliable detection combined 

with the fast response time (frame rate is 20 fps) 

make it a reliable sensor for pre-crash applications, 

and the capability of pedestrian detection ensure 

that the proper measures can be taken for their 

protection. 

The stereo sensor’s capabilities make it suitable 

for several other ADAS applications. The ability to 

track the objects, especially those in front of the 

vehicle, recomment it for ACC applications, the 

wide field of view makes it suitable for go inhibit 

applications (where it is vital to detect last minute 

crossing pedestrians), and the lane estimation 

capabilities make it suitable for lane following 

applications. The stereo system is a complex 

integrated sensor, suitable for integrated ADAS 

applications.  
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