
Abstract–The dense (all pixels in image) stereo recon-

struction, real-time computable nowadays, brings 3D 

reconstructed points even for less textured image regions, 

and has a lower percentage of wrong reconstructed points. 

This article presents novel algorithms for obstacle detection, 

using dense stereo reconstruction. They analyze, on the top 

view of the scene, the local density and vicinity of the 3D 

points, and determine the occupied areas which are then 

fragmented into obstacles with cuboidal shape: without 

concavities and only with 90o convexities. The orientation of 

the obstacles is determined in order to get a very good 

fitting of the cuboidal model to the obstacles in the scene 

ahead and, consequently, to minimize the free space which 

is encompassed by the cuboids. The main abilities of the 

approach are: generic obstacle detection, determination of 

obstacles’ orientation, confident fitting of the cuboidal 

model.  

 
Index terms–dense stereo vision, obstacle detection, 

obstacle modeling, urban traffic, automatic cruise control 

 

I. INTRODUCTION 

 

Although the nowadays automatic cruise control 

(ACC) systems are a great achievement, they have 

limitations even in highway traffic where the 

scenario is quite simple. In the crowded city traffic 

solutions are not available yet. Currently the ACC 

systems detect the obstacles ahead by using either a 

radar or laser setup. 

The stereovision is the most promising 

technology so far: it is based on a passive sensor, it 

accurately measures the 3D position of thousands 

of 3D points in the scene ahead and it allows 

algorithms working on 3D data and intensity 

images as well. The stereovision has the 

disadvantage of requesting high complexity 

algorithms and processing large amount of data. 

The most known stereovision based approaches 

are: Inverse Perspective Mapping [1]; V-Disparity 

[2, 3], Warping [4]. They try to avoid the full 3D 

reconstruction in order to reduce the processing 

time. Unfortunately these methods have intrinsic 

limitations due to the methods themselves, due to 

the abandon of the disambiguation of the obstacles 

close to each other, and due to the inaccurate 

modeling of the 3D obstacles.  

The strongest point of our approach, based on 

the full 3D reconstruction of the scene [5], is the 

possibility to carry out geometrical reasoning for 

generic obstacle detection regardless the 2D 

appearance in images. The obstacles are 

confidently described by using the cuboidal model. 

The algorithms presented in this paper work on 

3D points provided by a dense stereo reconstruction 

engine. It provides 3D reconstructed points even for 

less textured image regions (figure 1.b). 

 

a) 

 

b) 

  
Figure 1. a) Left grayscale image, b) Pixels reconstructed 

as 3D points. The leftmost part is not reconstructed being 

not visible in the right image. 

 

The target is to detect the obstacles in terms of 

3D position, orientation and size, as boxes 

(cuboids) circumscribing the obstacles. The 

confident fitting of cuboids on obstacles is 

achieved in several steps. By analyzing the vicinity 

and the density of the 3D points, the occupied areas 

are localized (section IV). An occupied area 
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consists of one or more cuboidal obstacles that are 

close to each other. By applying criteria regarding 

the shape, the occupied areas may get fragmented 

into parts that obey the cuboidal shape (section V). 

The orientation of the obstacles (on the road 

surface) is of high importance as well (section VI). 

 The environment is considered as having a 

planar or a second-degree road surface, with 

obstacles above it. As guessed, an algorithm for 

obstacle/road separation is involved. 

 

II.  DENSE STEREO RECONSTRUCTION 

 

A calibration process estimates the camera’s 

intrinsic parameters (which are related to its 

internal optical and geometrical characteristics) and 

extrinsic ones (which are related to the 3D position 

and orientation of the camera relative to a global 

world coordinate system) [6]. 

The most computational expensive task, the 

stereo correlation, is performed by hardware, a 

specialized PCI board (www.tyzx.com). A software 

module rectifies the left and the right images, the 

hardware computes the disparities, and then, the 3D 

points are computed, by software. Both 

rectification and 3D points computing use the 

cameras’ parameters obtained through the 

calibration. 

Textureless image regions, regions with 

repetitive texture, regions of the faraway scene and 

regions that are not visible in both left and right 

images cannot be reconstructed (figure 1). 

The obstacle detection algorithms work on the 

3D reconstructed pixels and on the left image space 

(figure 1). 

A 3D coordinate system is defined. The origin 

of the coordinates system is the left camera. The Z 

axis is oriented ahead, representing the depth, the 

X-axis represents the lateral displacement and the 

Y-axis is used to express the elevation.  

 

 

III. 3. OBSTACLE/ROAD SEPARATION 

 

The obstacle/road separation algorithm ([5], [7]), 

is able to detect the surface of the road, by 

modeling it as a second-degree surface. 

   The only 3D points used by the obstacle 

detection algorithms are those situated above the 

road and below the height of the ego car (figures 2, 

and 3.b). 

In figure 3.b one can observe some road points 

marked as above the road, due to the reconstruction 

errors. 

 

 
Figure 2. 3D points classified as: road, above road 

and too high points 

 

IV. LOCALIZATION OF OCCUPIED AREAS 

 

Ideally, the obstacle detection algorithms should 

neither divide a real obstacle into smaller detected 

obstacles nor merge more real obstacles into one 

detected obstacle; two opposite requirements. 

Previous experience has shown that these 

requirements are hard to be fulfilled due to 

reconstruction errors and limitations. The presented 

approach favors the  merging of more real obstacles 

into one detected obstacle, named occupied area, 

and then  applies fragmentation criteria. 

It is supposed that the obstacles do not overlap 

each other on the vertical direction. In other words, 

on a top view (figure 3.c) the obstacles are disjoint. 

Consequently, in what follows, the Y coordinate 

(the elevation) of the 3D points will be ignored and 

all the processing is done using only the X and Z 

coordinates (top view). 

Due to the perspective effect of the camera, 

further obstacles appear smaller in our images, 

providing fewer pixels, and therefore, less, sparser 

3D reconstructed points in the 3D space. On the 

other hand, the error of the depth reconstruction 

increases with the distance too, which, contributes 

to the 3D points sparseness as well. 

The obstacle detection algorithms, processing 

the 3D points, would work easier if they would 

receive constant density of the points, regardless 

the distance. One idea would be to artificially 

introduce 3D points in between the reconstructed 

ones in order to keep a constant density, but this 

approach neither enriches the real 3D data nor 

reduces the depth error, and it slows down the 

processing. 

To counteract the problem of the points’ density, 

a schema to divide the Cartesian top view space 

into tiles with constant density is proposed (figure 

3). The horizontal field of view of the camera is 

divided into polar slices with constant aperture, 

trying to keep a constant density on the X-axis. The 



depth range is divided into intervals, the length of 

each interval being bigger and bigger as the 

distance grows, trying to keep a constant density on 

the Z-axis. 

 

a) 

 

b) 

  

 c) 

 
Figure 3. Division into tiles. a) Gray scale image, b) 

3D points – perspective view, c) 3D points – top view; 

the tiles are here considerably larger for visibility 

purpose; wrong reconstructed points can be seen in 

random places; reconstruction error is visible as well. 

 

A specially compressed space is created, as a 

matrix (figure 4.a). The cells in the compressed 

space correspond to the trapezoidal tiles of the 

Cartesian space. The compressed space is, in fact, a 

bi-dimensional histogram, each cell counting the 

number of 3D points found in the corresponding 

trapezoidal tile. For each 3D point, its cell in the 

compressed space is computed C(Row, Column), 

and the cell value is incremented. 

The column formula is: 
Column =ImageColumn/c 

where ImageColumn is the left image column of 

the 3D point and c is the number of adjacent image 

columns grouped into a polar slice as shown in 

figure 3.c (c = 6).  

The row of the compressed space, for a 3D 

point, has a formula obtained through a longer way: 

The Cartesian interval corresponding to the first 

row of the compressed spaces is: 
[Z0 … Z0 + IntervalLength(Z0)] = [Z0 … Z1] 

where Z0=Zmin, a minimum detection depth and 

IntervalLength(Z) = k*Z is the length of the 

interval beginning at a certain Z (further intervals 

are longer, k is empirically chosen). Thus  

Z0 + IntervalLength(Z0) = Z0+k*Z0 = Z0*(1+k) = 

Z1.  
The Cartesian interval corresponding to the 

second row of the compressed spaces is: 

[Z1 … Z1 + IntervalLength(Z1)] = [Z1 … Z2] 

where Z1 = Z0 + IntervalLength(Z0), in other 

words the second interval begins where the first 

one ends: 

Z1=Z0*(1+k) and 

Z1 + IntervalLength(Z1) = Z1+k*Z1  = Z1*(1+k) 

= Z0*(1+k) (1+k) = Z0*(1+k)
2
 = Z2. 

The ending of the second interval is the beginning 

of the third one: 

Z2 = Z0*(1+k)
2
 

The Cartesian interval corresponding to the n
th
 

row of the compressed spaces is: 

[Zn … Zn + IntervalLength(Zn)], where  

Zn=Z0*(1+k)
n
 (provable by mathematical 

induction) 

For a certain 3D point, having depth Z, the i
th
 

interval it belongs to is [Zi…Zi + 

IntervalLength(Zi)] = [Zi …Zi+1]. From the formula  

Z=Z0*(1+k)
i
, 

the i, as an integer number, is 

1+k

0

Z
Row = i = [log ]

Z

 

As a bottom line, each 3D point is transformed, 

from the Cartesian space to the compressed space, 

into the cell C(Row, Column). 

There is one more remark for the building 

process of the compressed space: due to the fact 

that the used points are situated in a 3D band with a 

constant 3D height (along the Y-axis), as described 

in section III, that band, on the image space, has a 

decreasing height as the depth increases (see figure 

3.b), having less 3D points respectively; to 

counteract this, the density of the cells is 

proportionally amplified with the depth. 

The cells having no points represent free space. 

The cells having just a few points (less than 20 – 

empiric value) are also considered free, most 

probably that those points were wrong 

reconstructed. The other cells, having many points, 

reveal the existence of obstacles. 



a) 

 

b) 

 

Figure 4. The compressed space (for scene in figure 3) 

– a bi-dimensional histogram counting 3D points (a). 

Groups of cells obtained by labeling (b) 

 

The compressed space is used for occupied area 

detection. The detection is based on a labeling 

algorithm applied only on the cells having many 

points. The small groups are rejected. Most 

probably that the rejected groups come from 3D 

reconstruction errors generated by repetitive 

patterns or less textured image regions. 

 

V. FRAGMENTATION OF OCCUPIED AREAS INTO 

CUBOIDAL OBSTACLES 

 

The occupied areas may contain more obstacles 

and by consequence may have miscellaneous 

shapes (figure 4.b). The obstacle tracking algorithm 

[8] as well as the ADAS applications need the 

individual cuboidal obstacles. Therefore the 

fragmentation of the occupied areas into the 

individual cuboidal obstacles is required. Two 

fragmentation criteria are proposed: 

 

A. CONCAVITY FREE SHAPES  

 

The shape of a cuboidal obstacle has no 

concavities. The shape of the occupied area (figure 

5.b) of a concave corner of a building (figure 5.a) is 

a relevant example (although it is particular, having 

right angle) and must be fragmented into two parts, 

one for each wall. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 
Figure 5. Fragmentation of a concave occupied area:  

a) free space included in the circumscribed cuboid,  

b) labeling in the compresses space, c) visible sides of 

the envelope of occupied area and the two subparts  – 

compressed space, d) and e) the two circumscribed 

cuboids – perspective view and top view respectively 

 

The solution is to determine the envelope of the 

cells of each occupied area, and then for each 

visible side (towards the camera) of the envelope 

(figure 5.c), the concavity between the side and the 

occupied cells is determined. If the concavity is 

large and deep, its deepest point gives the column 

(painted in red in figure 5.c) where the 

fragmentation will be done. The two subparts are 

subject to be fragmented again and again as long as 

they have significant concavities. 



By reconsidering the 3D coordinates (including 

Y) of the points that have filled the cells of an 

occupied area, the limits of the circumscribing 

cuboid are determined (figure 5.d – perspective 

view, and figure 5.e – top view). At this point, the 

cuboids are parallel with coordinate axes and the 

occupied areas may be named “obstacles” even 

though the criterion B might fragment them again. 

 

B. NO EMPTY CORNERS OF THE CUBOIDS 

 

A real obstacle is confidently detected whether the 

space between the sides of its oriented cuboid (its 

determination is presented in the section VI) and 

the visible shape of the cloud of its 3D points (on 

the top view) has a small area. In other words the 

shape must have only quasi-90
o
 convexities. The 

visible free area in each corner of the cuboid is 

calculated in square meters, and, in order to be 

relevant (the relevance of the metric measurements 

decreases with the distance), it is transformed into 

the number of cells of the compressed top view 

space. When one of the corners has a free space of 

more than k=10 cells (an empirically chosen 

threshold), there must be performed a 

fragmentation into two or more sub-obstacles that 

have confident cuboids. 

a) 

 

b) 

 

c) 

 
Figure 6. Fragmentation of an obstacle that doesn’t have 

a cuboidal shape: a) initial cuboid, b) top view of the 

initial cuboid and the optical ray of the fragmentation,  

c) the two sub-obstacles obtained by fragmentation 

 

An example is shown in figure 6.a and b, where 

no oriented cuboid would be confident. The 

fragmentation is done by using the optical ray that 

passes through one of the vertices of the free 

corner. The chosen vertex is the one that is the 

most interior in the obstacle. The procedure is 

recursively applied on the newly obtained 

(sub)obstacles as needed. The fragmentation of the 

large cuboid in figure 6.a is shown in figure 6.c. 
 

VI. DETERMINING THE ORIENTATION OF 

OBSTACLES 

 

In fig 7.a, it can be observed that, even though 

the real obstacle is oblique oriented, the cuboid 

encompasses some free space because the cuboid is 

parallel with the coordinate system. The shape of 

the cloud of 3D points is modeled by their envelope  

 

a) 

 

b) 

 
Figure 7. Obstacle orientation (top view):  

a) un-oriented box, b) the longest chain of visible 

envelope sides (green) and its surrounding rectangle 
 

and an analysis of its visible sides (towards the 

camera) can determine the orientation of the 

obstacle. If the analysis cannot determine a 

preponderant orientation of these sides, the box 

remains parallel with the axes of the coordinates 

system; it is un-oriented. 

In figure 7.b such an envelope is shown. The 

algorithm searches chains of consecutive sides 

having a low standard deviation of the slope of its 

components. If the length of the longest chain (the 

thick green one) is at least 70% from the length of 

the visible envelope, the obstacle orientation is the 

weighted average of the slope of the chain’s sides. 

As weights we use here the lengths of the sides. 



A rectangle with the found orientation is 

circumscribed on the visible sides and gives the 

base (top view – figure 7.b) of the oriented cuboid 

of the obstacle. The perspective result is shown in 

figure 8.b. Note: the envelope is not quite convex 

here, due to some approximations for speed up. 

 

VII. RESULTS 

 

The horizontal field of view of the cameras is 

about 70
o 
and the resolution is of 512x383 allowing 

the stereo reconstruction to work fine up to 50 

meters. The tests on thousand of images have 

shown that the approach is a robust one. The real-

time performance is of 20 frames/second, for the 

whole application, when a P4, 2.6 GHz computer is 

used and the dense stereo correlation is done by 

hardware.  

The figures used in this paper represent only the 

region of interest consisting of a centered 

horizontal band.  

 

a) 

 

b) 

 

c) 

 
Figure 8. Results. a) the orientation of the second 

obstacle from the right couldn’t be determined, 

b) an ideal case, c) due to merging of the pedestrian with 

the gate behind (left), the orientation is strange. 

 

VIII. CONCLUSIONS 

 

The proposed obstacle detection approach is 

original due to the direct use of the 3D 

reconstructed space and due to the divers geometric 

reasoning carried out on this space.  

The local density and vicinity of the 3D points is 

analyzed in a special compressed top view space. 

The compressed space keeps a constant density of 

the 3D points and neutralizes the error of the 

reconstructed depth. On the compressed space, a 

labeling algorithm is applied, on the cells with high 

density of points, determining the occupied areas. 

The occupied areas are fragmented into 

obstacles that are suitable for the cuboidal model. 

For this fragmentation, the visible shape (towards 

the camera) of the 3D points is analyzed and two 

criteria are used: the shape must have no 

concavities and the cuboid fitted on the shape must 

not contain significant free (drivable) space. 

The orientation of the obstacles is determined, 

when possible. 

Most of the processing is done on the 

compressed space which concentrates the useful 

information of the set of 3D points and leads to a 

fast computation. 

Due to stereo reconstruction errors and 

limitations, the instantaneous results can differ in 

successive frames. Thus, a tracking algorithm is 

needed in order to filter the noise, to reject bad 

detection and to fill in the detection gaps. 
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