
 

 

 

Abstract - This paper presents an original method for 

increasing the accuracy of ego vehicle motion estimation using 

video data. Our algorithm takes as input a monocular video 

sequence on which originally combines procedures for feature 

detection and filtering, optical flow, epipolar geometry and 

estimation of the rotation from the obtained essential matrix. 

Imposing a movement constraint on the rotation matrix, we 

obtain a powerful method for estimating the rotation of the 

vehicle from frame to frame. Furthermore, the obtained 

rotation and stereo data are used for computing the translation 

of the vehicle. The use of stereo data only for translation 

estimation diminishes the influence of stereo errors on rotation 

matrix. Experiments have been performed using various urban 

traffic scenes, with horizontal and vertical curvatures 

revealing a high degree of accuracy compared to reference 

measurements. 

I. INTRODUCTION 

The development of automatic driving assistance tools 

has been an important research task in the last decades. 

Various data from an urban scenario can be processed and 

interpreted in order to provide useful information about 

other cars in traffic, pedestrians, traffic signs, road or the 

elements of environment. 

Estimating the position of the ego vehicle in an urban 

scenario is both a desirable and a challenging task. 

Estimating the motion of the ego vehicle can be used in 

detecting and tracking various traffic objects, avoiding 

collisions, computing available paths and so on.  

There are several techniques that allow a reliable 

estimation of the motion of a vehicle. Some of them involve 

IMUs, others use lasers and others rely on GPS systems. 

Even if they can be used alone, the limitations of each of 

these techniques generally necessitate fusing them in order 

to obtain more reliable results. 

An emerging alternative to the above mentioned methods 

can be estimating the motion of the current car from video 

input. The video data is preprocessed in order to obtain 

distinctive environment features, which are then used for 

computing the ego car motion.  
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This technique is usually referred to as visual odometry.  

Originally proposed by Matthies [13], visual odometry is 

useful for a variety of reasons including the small price of 

the cameras, the fact that they are small and can be mounted 

on any vehicle and the increasing of computation power 

which makes the use of visual odometry even more 

appealing than the other traditional techniques [14]. Visual 

odometry can be performed both in a monocular and in a 

stereo configuration. 

This article presents a new method for estimating the 

motion of a vehicle from a video sequence obtained by 

camera sensors. A monocular video stream proves to be 

enough for computing the frame to frame rotation. For 

better rotation results, we take into account the trajectory 

the vehicle can follow. This trajectory constraint increases 

the accuracy of the results. Stereo data are then used for 

computing the translation. The algorithm we have 

implemented has proven to give good results in urban 

scenarios even if the road is straight or it contains curves, 

regardless how crowded the traffic is.  

The proposed method can be the starting point in 

developing more complex algorithms for separating static 

from moving objects or for temporally fusing the stereo 

data.  

The paper is structured as follows: In section II we 

present a summary of related work. Section III presents an 

overview of our method and a block diagram containing the 

main component modules. A description of each module 

and of the algorithm as a whole is provided in section IV.  

Section V shows some experimental results and makes 

some comparisons with the results obtained when other 

sensors are used. Finally, we summarize the current work 

and present future plans in section VI.    

II. RELATED WORK 

There are methods for estimating the motion of the ego 

vehicle based on various types of sensors, others than 

cameras. A laser scanners example is presented in [11].    

In robotics, there are several stereo vision based 

techniques for estimating the ego motion [10]. [5], [15] 

present methods to detect the camera motion from stereo 

without making use of the advantages of epipolar geometry.  

The increasing available computer power has opened 

new possibilities to handle real time complex computer 

vision algorithms. Good results for vehicle ego motion 

estimation based on monocular video are reported by [4]. 
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Compared to our approach, they compute moving regions 

which are propagated in time. Using these regions and the 

positions of the features in image, they reject those features 

which have bad correspondences and those features which 

are detected on moving objects. In our approach, the wrong 

correspondences between two frames are rejected by using 

two way optical flow [8] and the moving features are 

rejected by RANSAC [1] iterations and by the vehicle 

trajectory constraint.   

We have used the classical 8 points algorithm for 

estimating the essential matrix for two consecutive frames 

in the video sequence. An alternative would have been the 5 

points algorithm [2]. Due to the fact that we have hundreds 

of correspondences between two consecutive frames, we 

decided to use the simpler 8 points algorithm. Good 

tutorials for 8 points algorithm and epipolar geometry can 

be found in [7] and [1]. 

The segmentation between static and moving points can 

be done by using an algorithm that detects maximal cliques 

in graphs [5], [15]. Each two features for which the relative 

distance from one frame to the other is preserved are 

connected by edges, and the maximal complete subgraph is 

retained. The disadvantage of the technique is its 

sensitiveness to stereo reconstruction errors.  

III. METHOD OVERVIEW 

The proposed method consists of some steps that are 

performed for each pair of consecutive frames in the video 

sequence (Figure 1). The input of the algorithm is 

represented by the current frame and the previous one, and 

the outputs are the estimated rotation matrix and the 

estimated translation vector. First, we determine a set of 

point features in the previous frame. This can be done using 

good features to track [12]. We think that a simplified 

version of SIFT that doesn’t compute the key-points 

descriptors [17] or wavelet based features [16] would have 

also given good results. 

For the features previously determined, we compute their 

positions in the current frame using the optical flow [8]. 

Because we need very accurate correspondences between 

points, we calculate the optical flow from the previous 

image to the current one and then backwards, from the 

current image to the previous one. If the distance between 

the initial positions in the previous frame and the computed 

ones in the same frame exceeds a predefined threshold, then 

we reject the corresponding features. 

Based on the correspondences filtered by the above 

mentioned two way optical flow, we compute the 

fundamental matrix using the epipolar geometry. To 

achieve better accuracy, we use a RANSAC approach. This 

will reject bad point correspondences which passed the two 

way optical flow step. Furthermore, knowing the intrinsic 

parameters of the camera, we can compute the essential 

matrix. Using the essential matrix, the rotation of the 

camera coordinate systems between the 2 consecutive 

frames and the translation between them up to a scale factor 

(direction of the translation) are estimated. Additionally, 

some of the RANSAC results are rejected by a condition 

which follows the idea that the camera is mounted on the 

vehicle and hence it has the same trajectory as the vehicle.  

We use Kalman filtering to stabilize the results. To 

determine the exact value of the translation vector, we use 

the depths of the features points. Those depths are provided 

by the stereo framework [3] we used. Based on the rotation 

and on the direction of the translation previously computed, 

we determine the 3D differences between the coordinates of 

each selected feature. The average of these differences will 

represent the estimated translation vector between the 

consecutive frames. 

IV. PRACTICAL DETAILS 

In this section we describe the implementation aspects for 

the components in the block diagram given in Figure 1. 

A. Features detector 

The first step is to detect the features in one image. For 

this we prefer the corner-like or edge features that will be 

easily tracked based on the optical flow algorithm. 

Good features to track were first introduced by Shi & 

Tomasi [12]. According to their paper, good features are 

those which have two large eigenvalues for second moment 

matrix (structure tensor), and they can represent corners, 

salt-and-pepper textures, or any other pattern that can be 

tracked reliably in successive frames. 

B. Optical flow 

The Lukas-Kanade Sparse optical flow algorithm [8] is 

based on representing the image as a pyramid. The 

minimization of the sum of square distances, expanded in 

Taylor series as a function of flow displacements, is 

performed starting from the top levels of the pyramid and 

then propagated to the bottom levels, while iteratively 

refining the displacement values. 

Let’s consider that [ ]iii yxp =  are the features at the 

previous frame. By running forward the optical flow 

algorithm, we’ll get the correspondences  [ ]''' iii yxp =  

and an array of flags that indicate whether the 

correspondence is valid or not. For the valid 

correspondences we perform the optical flow backward. At 

this stage we will obtain positions [ ]'''''' iii yxp =  and a 

new array of flags to indicate valid flow vectors. Once those 

are computed, for each valid correspondence we will 

impose the following constraint: 

222 )''()''( δ<−+− iiii yyxx  



 

 

 

In out experiments we used 2.0=δ  pixels. Figure 2 

shows the features that are rejected by this mechanism for a 

usual traffic scene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 
 

Figure 1 – Steps between two consecutive frames 

 

 

 
Figure 2  Features marked in red are rejected by the two way optical flow 

C. Fundamental and essential matrices estimation. The 

eight points algorithm. 

We can consider that two consecutive frames obtained by 

the same camera at different times are equivalent with two 

images of the same scene obtained with two identical 

cameras in a stereo system. Hence, we can apply the 

epipolar geometry rules between two consecutive frames. 

 

 
Figure 3 - Epipolar geometry for consecutive frames  

 

Let P  be a 3D point in space and the corresponding 

vectors of coordinates in two consecutive frames be AP  

and BP  (Figure 3). AP contains the coordinates of point 

P  in the camera reference at previous frame and BP  

contains the coordinates of point P  in the camera reference 

for the current frame.  If we denote by 
T

zyx tttT ],,[=  

the coordinates of the translation vector in the camera 

reference at the previous frame and by R  the rotation 

matrix between the consecutive frames, we obtain the 

following relationship [1]: 

RANSAC 

Reject the poor features 

 

Apply optical flow backwards, 

starting from frame 2 

Reject features for which the 

distance between the initial and 

the computed position in frame 1 

is less than a threshold 

Detect “good features to track” in frame 1 

Compute the positions of the 

features in frame 2 by using 

optical flow 

Translation computation from stereo 

depths using filtered angles 

Kalman filtering for rotation 

 

Eight Points Algorithm 

Fundamental/Essential matrix 

Translation up to a scale factor and 

Yaw/Roll/Pitch computation from the 

essential matrix. 

 

Vehicle Movement Constraint 
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The matrix E  is called the essential matrix and 

establishes a mathematical relationship between the 

coordinates of the same point P  represented in the 

coordinate systems of two consecutive frames. 

Denoting by K  the matrix containing the intrinsic 

parameters of the camera, the fundamental matrix is defined 

by  

  
1−−= EKKF T

                         (2) 

Based on the fundamental matrix, the epipolar constraint, 

expressed in pixel coordinates, becomes:  

 0)( =
p

A

Tp

B FPP                      (3) 

where 
p

AP  and 
p

BP  represent the pixel homogenous 

coordinates of the point P  in consecutive frames. 

The fundamental matrix can be computed if we have at 

least 8 points correspondences between two consecutive 

frames by using the eight points algorithm [1]. 

In our method, we consider as known the intrinsic 

parameters of the camera and we propose to use only the 

video sequence for determining the rotation between 

consecutive frames.  

D. Estimate the rotation from the essential matrix 

To infer the rotation matrix between two consecutive 

frames using the already computed essential matrix, we 

used the singular value decomposition based method 

described in [2]. Let 
T

UDVE ~  be the singular value 

decomposition of the essential matrix, where U and V  are 

chosen such that 0)det( >U  and 0)det( >V . Then, the 

translation up to scale and the rotation will be: 

[ ]Tuuut 332313~  
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A proof of this result can be found in [6]. 

The correct rotation matrix is chosen such that the 

rotation angle around y-axis (yaw in our case) to be 

minimum. This is valid because the rotation of the vehicle 

between two consecutive frames is small. 

E.  The vehicle movement constraint 

Approximating the projection of the movement of a 

vehicle to the xOz plane by an arc of circle was successfully 

applied for object tracking in [9]. We use the same motion 

model for the ego vehicle in order to add a supplementary 

constraint to the essential matrix.  

 
Figure 4 – Vehicle motion in the xOz plan 

 

The relationship between the x and z of the translation 

and α  (yaw angle) is given by the formula: 

( ) )sin()cos(1 αα xz tt =−  or  xz tt =)2/tan(α  

When the vehicle moves forward, the yaw angle is 0 and 

the relation becomes 0=xt . In our experiments we have 

used the following form: 

( ) εα <− xz tt 2/tan  

This constraint, applied to reject non-compliant 

fundamental matrices obtained by the RANSAC iterations 

because of false matches and moving object in the scene, 

significantly improves the final result. 

F. Using RANSAC to find the best essential matrix 

The output of the optical flow is a sequence of pairs of 

pixels, the pixels of a pair representing the same feature in 

two consecutive frames. Using RANSAC, we apply the 

eight points algorithm for a several number of iterations) 

and compute the fundamental matrix which is respected by 

the highest number of pixel pairs.  

This is considered the best fundamental matrix, and it is 

used for determining the best essential matrix using (9). 

During the RANSAC iterations, a fundamental matrix 

which is chosen as the best so far is rejected if it doesn’t 

respect the vehicle movement constraint. 

G. Stabilizing the results 

In order to stabilize the result, we have used Kalman 

filtering for each rotation angle separately. The values we 

obtain for yaw, roll and pitch using the rotation matrix from 

the previous to the current frame, divided by the time 

interval between the two frames actually represent the rates 

of change for the angles. Those rates will be used as 

measurements for the Kalman process. The state of the 

system is then represented by the angle rate of change and 



 

 

 

the acceleration of angle change: 
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We used a dynamic model with constant acceleration for 

angle change. 

H. Translation 

Because we used the dense stereo framework presented in 

[3], we are able to get the 3D coordinates for most of the 

points in the image. Based on the 3D coordinates, and 

knowing the rotation and the direction of translation, we can 

easily compute the exact value of the translation vector. The 

following equation holds for each pair of inliers from the 

RANSAC process: 
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where [ ]111 zyx  represents the corresponding 3D 

coordinates for the pixel in the previous frame and 

[ ]222 zyx  represents the corresponding 3D 

coordinates for the pixel in the current frame. Vector t and 

matrix R  are the translation direction and the rotation 

matrix obtained using essential matrix. The unknown m  is 

obtained by a weighted average over all inliers. The weights 

are inverse proportional with the z coordinate of the 3D 

point because the error reconstruction increases with depth. 

Based on translation and the time interval between 

consecutive frames we can compute the speed of the ego 

vehicle. This speed is smoothed using Kalman filter by 

considering a constant acceleration motion model for 

following state vector: 
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The acceleration in the above case is the hidden variable of 

the dynamic system. 

V. RESULTS AND EVALUATION 

We used MATLAB to simulate how the algorithm 

performs in different road scenarios. The number of 

iterations used for RANSAC is 300. The minimum number 

of RANSAC iterations can be determined theoretically 

based on the probability of choosing an inlier ( 5/3≈w  in 

our case), the probability we expect for the algorithm to 

succeed ( 0.99=p ) and the number of points needed to 

determine the model (we used nine points for 8 points 

algorithm) as follows: 

( )( ) 271.87
5/31log
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The value taken for vehicle motion constraint threshold is 

1
10

−=ε  and it was chosen experimentally. 

 
Figure 5  - Yaw estimation for 100 frames 

Figure 5 shows the yaw estimate for 100 frames in a 

double curve (left first and then right). On horizontal axis 

we have the frame number and on the vertical axis the yaw 

from the previous frame to the current frame expressed in 

degrees. The blue line represents the yaw angle computed 

based on the yaw rate read from the vehicle and the time 

interval between frames. The red line represents the yaw 

angle determined with our method. It can be seen that even 

non smoothed values are very close to the values read from 

the vehicle. With green we represented the filtered value of 

the output. The red peek around frame 70 appears because 

of the changes in illumination caused by the shadows of the 

buildings. As shown in Figure 5 the algorithm recovers 

quickly from this error. 

Figure 6 shows the roll and pitch estimation for the same 

set of 100 frames. As seen in the figure they both oscillate 

close to 0.  

 
Figure 6 – Roll (upper figure) and pitch (lower figure) for 100 frames. 

We have also tested how the approach performs without 

using the vehicle motion constraint. The results for the first 

50 frames used in Figure 5 are represented in Figure 7. The 

oscillations around the value read from vehicle are bigger, 

but the graph with red still follows the blue line. This shows 

that the constraint we proposed increases the accuracy of 

the rotation estimation. 



 

 

 

 
Figure 7 - Yaw estimation for 50 frames without vehicle trajectory 

constraint. 

 

 
Figure 8 – Motion segmentation example. 

Figure 8 shows how the approach can be used for the 

segmentation of moving objects in the scene from 

monocular video. The green points are the points used for 

computing the essential matrix (the points that respect the 

epipolar constraint). Blue lines are some epipolar lines. 

With red we marked the outliers reported by the RANSAC 

algorithm. As can be seen in the figures, some red points 

correspond to errors and other red points belong to moving 

objects. The grouping of red points on moving obstacles 

can be observed especially in curved roads because the two 

3D correspondences calculated by optical flow and the 

camera centers are not in the same plane. We believe that a 

temporal tracking of the regions where the red points persist 

can lead to a good approach for motion segmentation in 

monocular video. 

 
Figure 9 – Translation estimation. 

Figure 9 shows how the speed is estimated for 100 

frames. Blue represents the speed from the vehicle sensor. 

Green depicts the estimated speed in km/h, calculated based 

on the translation detected by our algorithm and the time 

interval between consecutive frames. Red represents the 

Kalman filtered speed. 

Figure 10 shows the top view representation (right side) 

for the frame in the left side in the coordinate system of the 

first frame. It is visible how the front vehicles advance in 

time. With further processing, this approach can be used for 

motion estimation based on stereo data. The representation 

is made in the road plane (XOZ) in a rectangular area of 14 

(7 in the left of the camera and 7 in the right) meters on the 

X axis and 30 meters on the Z axis. The medium height in 

rectangular areas of 20x20 centimeters is represented. 

 

 
Figure 10 – 3D reconstructed data representation in a global coordinate 

system. 

Figure 11 shows how the 3D points obtained based on 

stereo reconstruction can be fused for multiple frames. For 

the points covered by red in the left images, we have the 3D 

correspondents, and on the right their depths are 

represented. With uniform blue predominant in the upper 

and lower part of the image, the points for which we don’t 

have reconstruction are represented. The upper figures 

represent the start frame and the lower figures represent the 

fused information for 5 frames. 



 

 

 

 
Figure 11 Temporal fusion of 3D data. 

It can be observed that by fusing the 3D information in the 

lower figure, we have a better view of the 3D world. The 

left side of Figure 12 represents three dimensionally the 

upper part of Figure 11 and the right side of Figure 12 

represents the lower part of Figure 11. 

 
Figure 12 Three-dimensional representation of temporal fusion  

From our estimations a C++ implementation with 

additional optimizations and profiling would lead to a real-

time (20fps) or close to real time solution. 

VI. CONCLUSIONS AND FUTURE WORK 

We described a way of combining pixel features from 

images, optical flow, epipolar geometry, RANSAC and 

Kalman filtering in order to achieve accurate motion 

estimation from video data. To estimate the 3D rotation 

matrix for consecutive frames we need only a single 

camera. This fact increases the estimation accuracy because 

we don’t need to handle stereo reconstruction errors. Since 

translation can be determined only up to a scale factor 

based on monocular video, we used the 3D coordinates 

associated to some feature points in image for estimating 

the translation. 

We have also shown how the estimated transform 

between frames could be used for motion segmentation, 

temporal fusion or representation of stereo data in a global 

coordinate frame. 

Compared to other methods in the literature, we used the 

fact that motion is not detected between two arbitrary 

frames, but between two successive frames taken from a 

camera mounted on the vehicle. Because the projection of 

the vehicle motion in the xOz plane can be very well 

approximated by an arc of circle, we added this as an 

additional constraint for the essential matrix. This constraint 

helps the RANSAC process to infer the correct essential 

matrix even if there are many outliers and many features 

belong to objects in motion. 

  Some problems can occur when significant changes in 

illumination appear because optical flow will give poor 

results in that case. Improving this will be one of the 

following steps in this research direction. 
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