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Abstract—This paper presents an on-line calibration method 
of the absolute extrinsic parameters of a stereovision system 
suited for vision based vehicle applications. The method uses as 
prior knowledge the intrinsic parameters and the relative 
extrinsic parameters (relative position and orientation) of the 
two cameras, which are calibrated using off-line procedures. 
These parameters are remaining unchanged if the two cameras 
are mounted on a rigid frame (stereo-rig). The absolute 
extrinsic parameters are defining the position and orientation 
of the stereo system relative to a world coordinate system.  
They must be calibrated every time after mounting the stereo-
rig in the vehicle and are subject to changes due to static 
(variable load) and dynamic (acceleration, bumpy road) 
factors. The proposed method is able to perform on-line the 
estimation of the absolute extrinsic parameters by driving the 
car on a flat and straight road, parallel with the longitudinal 
lane markers. The edge points of the longitudinal lane markers 
are extracted after a 2D image classification process and 
reconstructed by stereovision in the stereo-rig coordinate 
system. After filtering out the noisy 3D points the normal 
vectors of the world coordinate system axes are estimated in 
the stereo-rig coordinate system by 3D data fitting. The output 
of the method is the height and the orientation of the stereo rig 
relative to the world coordinate system. 

I. INTRODUCTION

ISION based sensors are gaining greater importance 
over the active sensors (radars, laser scanners, etc.) in 

the field of driving assistance systems due to their 
decreasing costs and increasing hardware processing 
capabilities. Moreover, tasks such as the lane detection are 
one of the exclusive privileges of computer vision.  
 The measuring capabilities of vision sensors with 
monocular cameras are reduced because corresponding 
methods are relying on some prior knowledge of the scene 
(such as flat road assumption, constant pitch angle, etc.), 
which cannot be always fulfilled in real scenarios. However, 
a full 3D reconstruction of the driving environment is 
possible when using a stereovision system. 
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 In the second case, the quality of the reconstruction is 
strictly dependent on the estimation (calibration) accuracy 
of the following parameters: 

Internal parameters of the stereo-system: intrinsic 
parameters (focal length and the principal point 
positions) and relative position and orientation of the 
two cameras (relative extrinsic parameters).  
Absolute extrinsic parameters of the stereo-system:
position and orientation of the stereo-rig (usually the 
left camera coordinate system) relative to a world 
coordinate system in which the measurements are 
reported. 

 The quality of the internal parameters influences the 
accuracy of the essential and fundamental matrix and 
consequently the position of the epipolar lines [1], which is 
essential in the stereo correlation process. Their wrong 
estimation can lead to a lack of correlated points or to false 
correlations which is disastrous to the whole stereo 
reconstruction process. The quality of the absolute extrinsic 
parameters is linked only to the accuracy of the 3D 
measurements relative to the world coordinate system.  
 Regarding the intrinsic parameters calibration there are 
many general purpose methods found in the literature [2]-
[5], which can be applied off-line. Most of them are 
estimating the parameters by minimizing the projection 
errors of a set of control points from a calibration 
object/pattern, with known structure, against the detected 
2D images of the same control points. Multiple views of the 
calibration object are taken and the accuracy of the results 
usually increases with the total number of considered 
control points. The Bouguet method implemented in the 
Caltech Camera Calibration Toolbox [5] has also the 
possibility to estimate the relative extrinsic parameters of a 
stereovision system. Moreover, many integrated 
stereovision systems [6], [7] are delivered with off-line 
calibration tools able to estimate the internal parameters of 
the stereo-system. 
 Regarding the absolute extrinsic parameters estimation, 
the existing methods can be grouped in two categories: off-
line methods and on-line methods.  
 For the off-line methods the principle is the same: 
minimizing the projection error of some 3D control points 
with known positions in the world coordinate system 
(measurement coordinate system). Therefore all the absolute 
extrinsic parameters can be estimated (rotation matrix and 
translation vector [1]). Some general purpose methods [5], 
[8] are using the same calibration object as for the intrinsic 
parameters estimation. Such an approach is suited only for 
near range applications (e.g. indoor visual navigation of 
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robots). Dedicated methods for vision based driving 
assistance systems are using painted markers in known 
positions on a flat road surface, as in [9] and [10]. Because 
the markers are placed in a large depth range, the obtained 
accuracy for far range detection is higher compared to the 
general purpose methods. 

Regarding the on-line methods, a dedicated calibration 
object with known geometry is no more available.  
Nevertheless, some prior knowledge about the calibration 
scene structure must be known in advance. The most facile 
approach is the usage of a planar road surface with some 
painted markers. The absence of a calibration object limits 
the number of detected parameters.  In [11] and [12] Weber 
has proposed two ground plane-fitting methods based on the 
residual disparity of road points, in order to estimate a 
subset of parameters of a stereo camera mounted on a 
vehicle:  the height, the pitch angle and a sort of roll angle, 
but now yaw angle. In [9] a method for on-line adjustment 
of the extrinsic parameters based on painted markers on the 
car’s hood was introduced, but the extrinsic parameters are 
relative to the ego-car coordinate system and not to a global, 
road related one. 

In this paper we present a fast on-line calibration method 
able to estimate the orientation and height of the stereo-
cameras, related to the ego-vehicle world coordinate system. 
The world coordinate system has the OX and OZ axes in 
the road plane with OZ coinciding with the longitudinal 
axis of the ego-vehicle (Fig. 3). Its origin is the projection 
of the ego-vehicle’s front wheel axis central point on the 
road plane and is moving with the car along the road. The 
height of the stereo-system and its orientation relative to this 
world coordinate system are influenced by variable load of 
the car. Therefore performing an on-line calibration of the 
absolute extrinsic parameters for the initial conditions of a 
specific vehicle-setup is essential in order to perform a 
complete reconstruction of the driving environment 
(implying 3D stereo-reconstruction, road obstacle 
separation, obstacle detection, as in [13] and [15]).  
Furthermore, dynamic variations of the ego vehicle’s 
orientation and position relative to a lane related world 
coordinate system can be performed by specialized lane 
detection modules as in [14], [15]. 

II. PROBLEM STATEMENT

Considering the intrinsic parameters and the relative 
extrinsic parameters of both cameras already known 
(because they can be estimated off-line using dedicated  
calibration methods), it is possible to perform 3D 
reconstruction [13]  in the left camera coordinate system 
also referred as Camera Reference Frame (CRF). The 
purpose of a vision based vehicle application is to perform 
the reconstruction in a world coordinate system (referred as 
World Reference Frame - WRF). In order to do that, the 
rotation matrix and translation vector of the left camera 
(RC

left, TC
left), with respect to WRF, have to be determined. 

Furthermore, using the relative extrinsic parameters (Trel,
Rrel), right camera position and orientation can be 

calculated, thus obtaining the complete calibration of the 
stereovision system’s absolute extrinsic parameters: 
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When the rig is mounted into the car it has a dedicated 
mounting position which will be the same, with very small 
errors, even if the rig is mounted or un-mounted repeatedly. 
We also consider that the cameras are tightly fixed on the 
rig, and their relative position and orientation will not 
change if not specifically wanted. The position of the left 
camera (CRF) in WRF is defined as the translation vector 
TC

left = [ TCX TCY TCZ ]T. The lateral offset TCX has a relative 
meaning to the car longitudinal axis; the longitudinal offset 
TCZ has a relative meaning to the car front wheel axis. Both 
parameters can be measured (with a few cm errors) or 
estimated (using the off-line calibration procedure), so there 
is no need to estimate them on-line. Therefore, the only 
remaining problem to be solved is the estimation of the 
rotation matrix (RC

left) of the CRF and also its height (TCY),
which is highly dependent on the car load. 

III. OVERVIEW OF THE METHOD

The proposed solution is based on 3D coordinates of 
reconstructed points (in CRF) from lane markings’ edges 
painted on the road surface. Therefore this method does not 
require calibration objects with a known structure, nor 
calibration patterns, but a suitable environment respecting 
the following constraints: 

flat road surface with no curvature or inclination; 
presence of clear longitudinal lane markings on each 
side of the car and no other objects on the road; 
longitudinal axis of the car should be parallel with the 
road longitudinal axis and also with the lane markings 
all the time (no change in car’s moving direction is 
allowed); 
for better results it is recommended to have continuous 
lane markings, slow speed and (as much as possible) a 
canonical placement of the cameras on the rig and 
small values for yaw and roll angles of the left camera, 
related to road plane. 

The on-line calibration process is performed along a fixed 
number of consecutive pairs of images, captured while 
driving the car. For each pair, two major steps are applied: 

first step consists in extracting the current lane 
markings’ edge points. The only important edges are 
those parallel with the longitudinal axis of the road, 
thus each lane marking has only two useful edges; 
second step takes as input the 3D coordinates of the 
previously classified edge points, reconstructed in 
CRF using a fast and high accuracy stereo-
reconstruction algorithm [13]. The output will be the 
rotation matrix RC

left and the height TCY of the CRF 
related to WRF.  



IV. CLASSIFICATION OF THE ROAD MARKING POINTS

Road features are searched only through a 2D analysis on 
the left image. Possible lane marking edges are searched as 
pairs of segments respecting the following constraints: 

there is a limited distance among them; 
similar intensity difference is encountered between the 
inner-bright and outer-dark sides; 
are situated bellow the vanishing point; 
their extensions intersect the vanishing point. 

The vanishing point position is determined using an 
initial vanishing point estimation method, followed by a 
vanishing point position tracking throughout the pairs of 
captured images. The initial estimation is also used 
whenever the vanishing point tracking fails, as means to 
reinitialize the tracking procedure. 

A. Initial vanishing point estimation 
The lines containing segments filtered with respect to the 

first two constraints are plotted on two interlaced grids 
formed by square cells of size equal to the permitted error in 
estimating the vanishing point position (Fig. 1). Each cell 
has an associated value, which is incremented with the 
length of any segment (without extension part) that passes 
through it. Finally the cells that have the maximum values 
in the two grids, as well as the cells that have values equal 
or between the two maximums, are selected and their center 
of weight is returned as an approximation of the vanishing 
point position. The two maximums must have neighboring 
positions otherwise the vanishing point is not validated.  

B. Vanishing point tracking 
Once we know the vanishing point position, it can be used 

as an extra constraint for the returned lane marking 
segments, as their extensions must be passing close to it.  

In the end of the whole feature selection algorithm, the 
segments classified as lane markings’ edges are known and 
their equations in the image plane are used to determine the 

vanishing point position for the next frame, as their 
intersection:  

nvpnvp

vpvp

offsetyslopex

offsetyslopex
...
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where (xvp, yvp) is the unknown vanishing point position and 
slopen, offsetn are parameters describing nth segment 
equation. 

Applying Least Squares we obtain (xvp, yvp) as the point 
having the minimum sum of the squared distances to every 
line containing lane markings’ segments.  

C. Selection of the proper lane markings 
Normally all lane markings can be used in the calibration 

process, but for accuracy reasons we selected only those 
belonging to the current lane. Considering that the stereo 
system is forward oriented, current lane markings will 
appear by the two sides of the vertical line that passes 
through the vanishing point. They are selected by their 
orientations, considering the vertical line as reference and 
the positive angles, counter clockwise: 

the right current lane markings are found having the 
minimum positive angles; 
the left current lane markings are found having the 
maximum negative angles. 

The angles found for the current lane are tracked from 
frame to frame, using a polar histogram (Fig. 2) containing 
the results from a certain number of previous frames. In 
case the markings from one side of the current lane are lost, 
nothing is returned for that frame.  

Fig. 1.  Initial vanishing point estimation: the two interlaced grids; the 
filtered segments before applying vanishing point discrimination 
(white) and their extensions (black).

V. ESTIMATION OF THE ABSOLUTE EXTRINSIC PARAMETERS

All points of each segment classified as belonging to the 
current lane makings are further reconstructed in CRF and 
their 3D coordinates are used in the process of estimating 
the rotation matrix (RC

left) and height (TCY).

Fig. 2.  Polar histogram used to track current lane markings’ 
segments. Segments not passing the thick black-sectors are filtered 
out.

We will further consider that the axes of WRF are OXW,
OYW, OZW and the axes of CRF are OXC, OYC, OZC (Fig.
3).
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Fig. 3.  WRF (O XW YW ZW) and CRF (O XC YC ZC) – scene overview. 
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Fig. 5.  Projection of lane marking segments on planes XCOZC and
YCOZC. Each reconstructed segment should have identical orientation 
as OZW axis. Given a point position in CRF, described by vector PC, its 

position in WRF will be given by vector PW according to the 
following formula: 

left
CC

left
CW TPRP  (3) 

TCX and TCZ components of TC
left vector are considered to 

be known (they can be measured or estimated), so it only 
remains to estimate RC

left and TCY, where: 

T TTT OZOYOXR WWW
left

C  (4) 

and OXW, OYW, OZW are the normalized vectors 
corresponding to the WRF axes in the camera reference 
frame (Fig. 4). In order to have a better view, the 
normalized vectors of the WRF were translated in Fig. 4 in 
the center of CRF. This process does not affect the rotation 
matrix. 

The problem of computing RC
left (4) is reduced to 

estimating only OYW and OZW, because OXW is the cross 
product of the first two: 

WWW OZOYOX  (5) 

As the car is driven parallel with the lane markings, their 
3D reconstructed edges in CRF should be parallel with OZW
axis, so its orientation can be obtained simply by estimating 
the normalized direction of any of the edges. In order to 
obtain a robust result, we calculated the average orientation 
of all reconstructed edges. 

The 3D orientation of an edge can be calculated from its 
projections on planes XCOZC and YCOZC (Fig. 5). Actually 
each edge is represented by a set of n reconstructed points 
in CRF. Their projections on XCOZC, respectively YCOZC
are constrained by the following set of equations: 
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where PC
k = [ Xk Yk Zk ]T. Initially, we filter out points 

having depth and lateral offsets outside of a given range 
(outside our Space-Of-Interest (SOI) [15]). Afterwards we 
interpolate the remaining points through a weighted least-
squares process applied on (6), where aXOZ, bXOZ, aYOZ, bYOZ
are the unknowns. Finally the 3D orientation of the edge is 
obtained as the following vector: 
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Fig. 4.  WRF (O XW YW ZW) orientation in CRF (O XC YC ZC).
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The weight associated to each point is inverse 
proportional with its reconstruction error and respects the 
following formula: 

kk Error
MaxE

MinWMaxWMaxWWeight  (8) 

where weights are in range MinW to MaxW, MaxE is the 
maximum reconstruction error allowed (points with greater 
errors are removed) and Errork is the estimated 
reconstruction error for current point. Considering the case 
of a canonical stereo-system, it is possible to derive a 
formula which estimates the reconstruction error in CRF by 
simply knowing the correlation error ( ), the focal 
distance ( ) and the baseline ( b ):
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We were able to use this approximation also in a general 
camera configuration with small relative angles, because the 
differences between estimated errors, for a canonical 
configuration compared to our general configuration, were 
up to 150 mm in the case of points situated at 10 m height, 
100 m ahead and 8 m lateral offset (extreme limit of our 
SOI). These are maximum errors and only a very small 
percentage of the points will encounter such 
coordinates/errors.

The weighted least-squares process is repeated several 
times, each time the points being filtered out if their fitting 
error is greater than a fixed percentage of the average fitting 
error. We imposed several conditions for stopping the 
iterations:

number of iterations equals a certain value – 
concerning the speed; 
number of remaining points becomes lower than a 
certain percentage of their initial number; 
average fitting error drops under a certain value (based 
on experimental results); 
average fitting error does not converge. 

Once the orientation of an edge is obtained using (7), it is 
compared with the average OZW axis obtained from a fixed 
number of previously captured image frames. A filtering 
threshold is defined in terms of a fixed distance and a fixed 
maximum error allowed at that distance: 

FixedDist
ErrorMaxAllowedThreshold 1tan  (10) 

This approach is based on the fact that lane markings’ 
edges are parallel with OZW axis and their orientation 
remains constant from frame to frame, assuming the car 
does not change its heading direction.

The remaining edge points are known to be points from 
road plane and respect the following constraints: 
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where H is the height of the plane and n = [ A B C ]T is the 
normal to the plane. The above system of equations can be 
solved using a weighted least-squares process, in which the 
weights are calculated according to (8). The result is a 
plane-fitting of all road points, thus obtaining the normal 
vector n = OYW and the height H = TCY. This process is 
performed several times, until one of the above stated 
stopping conditions is fulfilled. 

Once OYW and OZW axes are estimated, we calculate 
OXW using (5). Therefore we obtain the rotation matrix 
RC

left according to (4). Finally, we apply a cleaning process 
on rotation matrix elements, based on Singular Value 
Decomposition (SVD), in order to eliminate possible axis 
distortions appeared due to precision errors in computations 

or imperfect 3D reconstruction of points in CRF. This final 
stage insures an orthogonal shape for the rotation matrix [5]. 

As the on-line calibration is performed on several 
consecutive frames, the results are averaged over frames, in 
order to avoid unstable results due to small car oscillations 
or small changes in heading direction. 

VI. EXPERIMENTS

We performed several experiments while driving the car 
on an approximately flat road with clear lane markings. The 
intrinsic parameters of the cameras and relative extrinsic 
parameters were considered known, as they were obtained 
using an off-line calibration process. Table I contains 
several initialization parameters we used while performing 
the on-line calibration of the absolute extrinsic parameters.  

TABLE I
CONSTANTS USED FOR THE EXPERIMENTAL SETUP

Symbol Value Description 

c 0.2 pixels 

correlation error in (9); it was 
chosen as the most frequent 
correlation error obtained after 
performing several experiments 

[MinW, MaxW] [0, 10] allowed weight range in (8) 

MaxE 0.5 m maximum reconstruction error in (8) 

MaxAllowedError 550 mm maximum allowed error in (10) 

FixedDist 50 m distance for maximum allowed error 
in (10) 

The tests were performed on 50 consecutive frames. The 
estimated rotation matrix and height were compared with 
those obtained using an off-line calibration process. Results 
concerning height and derived rotation angles (pitch, yaw 
and roll) corresponding to the computed rotation matrix, are 
presented in Fig. 6. 

As it may be noticed, all four parameters were close to 
the off-line estimated values with offsets induced by 
different vehicle load, compared to the off-line setup, 
proving method stability and accuracy. Tests performed on 
other sequences revealed the same small error’s range. The 
yaw angle estimation is highly dependant on driver’s ability 
to drive the car parallel with the lane markings. 

Regarding the implementation of extrinsic parameters 
estimation phase, its complexity respects the following 
formula: 

PIPIionsNoComputat
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where n is the number of lane classified marking edges, Ii is 
the number of weighted least-squares iterations performed 
when estimating edgei’s direction, Pi is number of points 
from edgei, I is the number of weighted least-squares 
iterations performed for road plane fitting and P is the 
number of points involved in road plane fitting. 

The average processing time needed for extracting the 
lane markings’ edges was about 3.9 ms (644x512 image) 
while for the extrinsic parameters estimation about 0.2 ms, 
resulting a total time of 4.1 ms. Tests were deployed on a 
2.6 GHz Intel Pentium IV Processor . 



VII. CONCLUSIONS

In this paper was proposed an on-line calibration method 
of the absolute extrinsic parameters characterizing a 
stereovision system, suited for vehicle applications. The 
intrinsic and relative extrinsic parameters of the cameras are 

considered to be known as they can be estimated using a 
high precision off-line calibration procedure.

(a)

(b) 

(c)

(d) 
Fig. 6.  Experimental results on 50 consecutive frames: a) Pitch angle 
by averaging rotation matrix on previous frames; b) Yaw angle by 
averaging rotation matrix on previous frames; c) Roll angle by 
averaging rotation matrix on previous frames; d) Height by averaging 
results on previous frames. (dots – estimated values; thick gray-line – 
mean value; thick black-line – values of the off-line calibration). 

The process does not require any calibration objects with 
a known structure, nor calibration patterns, but only a 
suitable environment consisting in a flat and straight road 
with clearly painted lane markings. Such an environment 
may be found on highways or marked roads, so it does not 
require the construction of special calibration fields. The 
results were very close to those obtained using the off-line 
calibration, with offsets determined by static load factors for 
the used car-setup. 
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