
1-4244-0361-8/06/$20.00 ©2006 IEEE

Real-Time 3D Environment Reconstruction Using
High Precision Trinocular Stereovision

Sergiu Nedevschi1, Silviu Bota1, Tiberiu Marita1, Florin Oniga1, Ciprian Pocol1

1Technical University of Cluj-Napoca,
{Sergiu.Nedevschi, Silviu.Bota, Tiberiu.Marita, Florin.Oniga, Ciprian.Pocol}@cs.utcluj.ro

Abstract - This paper presents an implementation of a 3D envi-
ronment reconstruction system, using trinocular (3 camera) ste-
reovision. The system does not use rectification, in order to im-
prove precision. Sub-pixel accuracy correlation is used. Feature
extraction and correlation use MMX and SSE2 optimizations.
Reconstruction correctitude tests were conducted using both syn-
thetically generated images and camera acquired images.

I. INTRODUCTION

Artificial vision systems can supply great amounts of infor-

mation, useful for autonomous navigation systems, driving
assistance systems and video teleconferencing systems. In or-
der for this information to be effective, it has to capture the true
3D structure of the environment.

Due to the projection effect of the camera’s lenses system,
the 3D environment is transformed into a 2D image. In the pro-
jection transform the depth information is lost, i.e. the true po-
sition of each projected point along its corresponding projec-
tion ray cannot be recovered (Fig 1). All points on the OML
projection ray are projected in the same point ML, thus the real
position of point M that generated the projection ML is un-
known. The loss of depth information prevents 3D environ-
ment reconstruction using a single camera.

Stereovision is a field of computer vision, which studies
methods for recovering depth information by using two or
more cameras instead of just one. The theoretical basis on
which stereovision is build is epipolar geometry [1]. Epipolar
geometry describes the configuration of stereo camera systems,
using the pinhole camera model [1] and provides methods for
3D reconstruction.
Fig. 2. shows the geometry of a two camera system.

Figure 1. Left: perspective camera with its attached coordinate system. Right:

Point M is projected into point ML.

Figure 2. Epipolar geometry of a binocular system.

The projections of point M in the left and right camera’s im-
age planes are points ML and ML respectively. It is always pos-
sible to reconstruct the position of M if ML and MR are known.

The plane OLMOR is called the epipolar plane associated
with point M and is determined by the optical centers of the
cameras, OL and OM and the point M itself. The epipolar plane
of course, contains ML and MR. The intersections of the epipo-
lar plane with the left and right image planes are two lines eL
and eR, the epipolar lines corresponding to the point M. The
usual 3D reconstruction procedure is this [1]:

for each point ML in the left image

1. determine eR, by intersecting plane OLMLOR
with the right image plane

2. search for MR on eR (this step is usually
known as left-right correlation)

3. determine M by intersecting OLML with ORMR
end for

The correlation step (2) of the reconstruction procedure is
usually the most computational intensive (because it involves a
search) and error prone. The instability of this step is caused by
the relatively short baseline OLOR as compared to the lengths
of the projection rays MLM and MRM which causes the projec-
tion rays to be almost parallel [2]. With a typical stereo system,
for a point M situated at 100m in front of the stereo system, an
error of just 1 pixel in the positioning of its determined projec-
tion point MR yields a 20m error in the positioning of point M
along the projection axis. The bottom line is this: for a stereo
reconstruction algorithm to be precise, the correlation step
must produce very precise results.

The precision of the correlation is affected by the presence or
absence of high frequency image intensity components along
the epipolar search line[2]. It is known that the higher the

intensity frequency along the search line, the better the position
of MR can be determined, and thus the higher is the reconstruc-
tion precision. Lack of high frequency information, specific to
un-textured areas, yields imprecise search matches.

There are situations where even the presence of high fre-
quency intensity components is not sufficient. Repetitive pat-
terns cripple the search process, by providing more than one
possible candidates for the search [1]. Some areas that are visi-
ble in the left image are not visible in the right one, because
other objects occlude them. Searching for an occluded point
yields no match or, even worse, a wrong match. Specular sur-
faces tend to look different depending of the viewing angle, so
they do not look the same in the left and right images [2].

Man made environments tend to consist in surfaces delimited
by more or less straight edges. The surface itself has markings
that have straight edges [3]. An edge has high frequency com-
ponents on the direction perpendicular to the edge, and very
low frequency components on the direction along the edge. As
Fig. 3 suggests, searching on epipolar lines perpendicular to an
edge gives precise results, while searching on epipolar lines
parallel to the edge has poor results.

Usual stereo systems have a horizontal baseline and parallel
optical axes, which means that epipolar lines are horizontal.
These systems are capable of reconstructing vertical edges, but
cannot precisely reconstruct horizontal edges.

Some stereo systems [4] generate their own artificial texture
by projecting a pattern on the reconstructed area. These active
reconstruction methods do not work well in uncontrolled envi-
ronments and are not suitable for the purpose of autonomous
navigation or driving assistance.

In this paper, we present a stereo system with three cameras,
in a configuration that allows the reconstruction of all edges,
irrespective to their orientation. The 3-camera configuration, as
shown in Fig. 4, consists of two binocular pairs, one vertical
and one horizontal. The vertical stereo pair has vertical epipo-
lar lines and the horizontal pair has horizontal epipolar lines.
The idea behind our 3 camera configuration is to reconstruct
each edge using the appropriate stereo pair, i.e. the

Figure 3. Searching on epipolar lines Top: epipolar line perpendicular to the
edge generates a precise matches. Bottom: epipolar line parallel to the edge,

poor matching

pair for witch the high frequency image intensity components
along the direction perpendicular to the edge will be used most
effectively [5]. Thus, horizontal edge points are reconstructed
using the vertical (left-bottom) camera pair while the vertical
edge points are reconstructed using the horizontal (left – right)
camera pair (see Fig 5).
 By comparing the experimental results of our trinocular 3D
reconstruction method to the results obtained by using a similar
3D reconstruction method but only two cameras we will show
the advantages of using 3 cameras.
 The rest of the paper is organized as follows: Section II pre-
sents the feature extractors used to supply features needed for
the correlation. Section III describes the sub-pixel accuracy
correlation procedure. Section IV describes the 3D reconstruc-
tion method. Section V presents the experimental results we
obtained. In section VI, we draw conclusions and present pos-
sible future work.

Figure 4. Our trinocular system configuration

Figure 5. Correlation and reconstruction of edge point with different orienta-
tions using the appropriate camera pair

II. FEATURE EXTRACTION

 The first step in any 3D stereo reconstruction algorithm is the
selection of features to be matched (correlated) using a stereo
camera pair. Features can be high level (line segments, ellipse
arcs) or low level (points) [1]. We used edge points for our
correlation features, as they are easily extracted and can be
found in great numbers in most images. In addition, as shown
in section I., the correlation is most precise in areas near edge
points.
 Because edges that are mostly horizontal are correlated in the
top-bottom stereo camera pair and edges that are mostly verti-
cal are correlated in the left-right stereo camera pair, we im-
plemented two detectors, one for mostly horizontal and one for
mostly vertical edge points. The image feature that gives the
orientation of an edge is the image intensity gradient orienta-
tion.
 Our two edge detectors are based on the Canny filter [11].
The steps of this filter are [2] (Fig. 6):
1. High-pass filtering for edge enhancement, using horizontal
and vertical Sobel derivative masks, depending on the desired
edge orientation. The results of this step are vertical and hori-
zontal image intensity gradient components.
2. Non-maxima suppression, for thinning edges to a pixel
width. Suppression is done horizontally for vertical edges and
vertically for horizontal edges
3. Double thresholding for both edge orientations
4. Connection along vertical or horizontal direction, depending
on the desired edge orientation.
 The results of the edge detection algorithm are shown in Fig.
7. Some oblique edges are detected both as vertical and as
horizontal.

Figure 6. Edge detection, left for horizontal edges right for vertical edges

Figure 7. Top: original image. Left: horizontal edges. Right: vertical edges

That does not pose any problems, because these oblique edges
can be reliably reconstructed using either the vertical or the
horizontal camera pair, with the other pair used for validation.
 Although edge detection is not the most computational inten-
sive step in the 3D reconstruction algorithm, it is still a step
worth optimizing. Because the algorithm’s steps are straight
forward, and no obvious algorithmic optimizations can be
made, we turned our attention towards implementing the algo-
rithm in assembly language, using, where possible, the SIMD
features of the MMX and SSE2 equipped microprocessors [6],
[7].
 The following steps of the edge extraction algorithm where
optimized:
1. Computing the horizontal and vertical image intensity gradi-
ents: 6 gradients are computed at once using MMX (Fig. 8 &
9) and 14 gradients at once using SSE2.
2. Non-maxima suppression for vertical edges: Again, compu-
tations are done for 6 points at once using MMX and for 14 at
once using SSE2. The optimized algorithm is based on the fact
that the maxima of the first derivative (gradient) correspond to
positive to negative sign changes of the second derivative.
Non-maxima suppression for horizontal edges is more easily
parallelized and can be done straight forward, for 8 points in
parallel using MMX and 16 points in parallel using SSE2.
3. Double thresholding is easily done for 8 points in parallel
using MMX and for 16 points in parallel using SSE2, the same
procedure being used for both horizontal and vertical edges.
4. Edge connection cannot be parallelized easily, so we imple-
mented a highly optimized breadth first search procedure in
assembly language, using a fixed sized, statically allocated
queue.

Figure 8 Vertical gradient computation using MMX

Figure 9. Horizontal gradient computation using MMX

III. CORRELATION

 As discussed in section I, correlation is the most difficult
step of the 3D environment reconstruction. It is highly compu-
tational intensive and error prone. Because we aimed for a real-
time system, we made efforts to optimize the correlation mod-
ule, even from the design phase. A number of choices must be
made when designing the correlation module:
A. The features to correlate. As discussed in section I, we
chose horizontal and vertical edge points as correlation features
for the left-bottom camera pair and for the left-right camera
pair respectively.
B. The measure of similarity between features. Comparing
pairs of pixels is highly ambiguous, because there are many
pixels with the same intensity value along the epipolar line and
pixel intensity is also affected by noise [1]. The usual work-
around is using a fixed-sized or variable-sized window, cen-
tered at the pixel of interest [1]. The use of variable-sized win-
dows, although more precise, is also slower, so we chose fixed-
sized windows. We also had to choose the size of the window.
Small window sizes can give more precision near occlusion
areas, but are also more ambiguous. Large windows are less
ambiguous, but are also less precise near occlusions and com-
paring them is slower [2]. We chose a 7x7 pixel window size.
Because of SIMD implementation issues, the window size is
actually 8x7 pixels, extended one column to the right.
 There are 3 widely used measures of similarity between pixel
windows. In the order of accuracy these are: the normalized
cross-correlation value, the sum of squared differences (SSD)
and the sum of absolute differences (SAD). Although it is not
the most precise, SAD is very fast, and has an MMX instruc-
tion to support it [6]. SAD ignores the brightness and contrast
differences between images, but our acquisition system is ca-
pable of compensating brightness and contrast differences. The
formula for SAD is:

3 4

12 1 2
3 3

(,) | [,] [,] |
y x

i y j x

SAD x y I i j I i j
+ +

= − = −

= −∑ ∑ , (1)

where I1 and I2 are the images containing the windows to be
compared.
C. The geometry used to compute epipolar lines and do correla-
tion. The most widely used is the canonical configuration [1],
in which the cameras are aligned so as the epipolar lines corre-
spond to rows or columns of the images. In this configuration,
the right image point corresponding to a left image point can be
found on the same row in the right image as the left, and the
bottom image point corresponding to the left image point can
be found on the same column in the bottom image as in the top.
The canonical configuration greatly simplifies the searching
procedure. However, because the cameras and their sensors can
never be perfectly aligned, a rectification step [2] is required,
before the correlation. Rectification distorts the images, re-
projecting them, to look as acquired by a canonical stereo sys-
tem. Because rectifying the images requires re-sampling, sam-
pling noise is introduced in the process. If advanced interpola-
tion techniques (e.g. bi-cubic) are used, rectification becomes
slower.

 Our choice was to use a general configuration. In this con-
figuration the epipolar lines have arbitrary orientations, de-
duced from the intrinsic and extrinsic camera parameters. The
fundamental matrix is the transformation that links points in
one stereo image to epipolar lines in the other. Each camera
pair has its own fundamental matrix [1]:

0
0

T
L LR R

T
L LB B

p F p
p F p

=

=
 (2)

In (2), pL is a point in the left image, pR one in the right image
and pB a point in the bottom image, both expressed in homoge-
nous coordinates. Therefore, the equations implicitly define
epipolar lines in any image (by removing one point from any of
the (2) equations we are left with the 3 coefficient vector of the
corresponding epipolar line. A simple choice would be to clip
such lines on the image edges and to search all along them.
However, it is wasteful to search on the whole line. Usually,
the geometrical locus of the correlated point is just a segment
of this straight line. For example, if the optical axes of the
cameras are not convergent, there is no point in searching the
correlated point in the right image to the right of its corre-
sponding point in the left image. An example of the true extent
of the geometrical locus of correlated points is depicted in Fig.
10. We call the geometrical locus of the correlated points a
search line, because that is the line on which correlated points
are searched.
 In order to compute the search line’s extent we take the fol-
lowing steps, for each point pL in the left image:
1. Back-project pL, obtaining its associated projection ray, rL
2. Clip rL by 2 planes, of equations z=zmin and z=zmax (ex-
pressed in the left camera’s coordinate system). This step is
useful, because any camera has a minimum and maximum
range, depending on the setting of its focus. We used a high
zmax (cameras are usually accurately reproducing points at in-
finity). However, the choice of zmin has a big effect on the
length of the search line. We used values in the range 2m-5m.
3. Transform the clipped rL in the world’s coordinate system,
obtaining RL.

Figure 10. Epipolar and search lines in the right and bottom images corre-

sponding to the marked point in the left image

4. Clip RL with a six planes, of equations (in the world coordi-
nate system): x=xmin, x=xmax, y=ymin, y=ymax, z=zmin, z=zmax.
The clipping uses a Cohen-Sutherland [8] algorithm in 3D
space. With this clipping, we restrict the reconstructed space to
a subspace of interest
5. Transform RL in the right camera’s and bottom camera’s
coordinate system, obtaining rR and rB.
6. Clip rR and rB with a zmin and zmax plane, as in step 2.
7. Project rR and rB in their corresponding images, obtaining the
right and the bottom search lines, sR and sB.
8. Clip sR and sB with a rectangle a little smaller than the im-
age, so as the correlation window will not cross the image
boundary.
 Of course, all the above steps are computationally intensive.
However, our algorithm works with image sequences, and the
intrinsic and extrinsic parameters [1] that allow all the projec-
tions and coordinate transforms to be made are determined
offline, and so are fixed for the duration of the image sequence.
This means that the search lines can be pre-computed. We do
not actually pre-compute the search lines, we compute them as
needed, but we store the result, so we do not have to compute it
again.
 D. The last choice of the correlation algorithm is how precise
the correlation should be. A correlation precision of one pixel
is not suitable, as it yields large errors for distant points. We
chose to use sub-pixel accuracy in our search. The correlation
of edge point pL in the left image is conducted as follows:
1. Determine if it is a vertical or horizontal edge point. If it is a
vertical edge point, use the right camera for correlation. If it is
a horizontal edge point, use the bottom camera for correlation.
If it is an oblique edge point, use the left camera for correlation
and the bottom (spare) camera for validation.
2. Obtain the (pre-computed) search line, as described in the
above algorithm.
3. Use the Bresenham algorithm [8] to follow the search line.
For each point on this search line, compute the SAD of the
(fixed) left image window and the other (mobile) image win-
dow.
4. Search for the minimum SAD. If the minimum is not small
enough, fail the search. This step deals with occlusions, i.e. the
actual correlated point may not be visible at all.
5. If the global SAD minimum is not sufficiently lower than the
other minima, located at least 3 pixels apart from it are, fail the
search. This step deals with repetitive structures, and requires
that there should be only a single pronounced minimum.
6. Use quadratic interpolation to refine the minimum position
to sub-pixel accuracy. Fig. 11 shows the interpolation proce-
dure.
 The search across the search line is the bottleneck of the
whole 3D environment reconstruction algorithm. Because of
this, the whole procedure was written using assembly language.
We used an MMX instruction capable of computing the SAD
of 8 pixels at once [6]. This is the reason behind using an 8
pixel-wide window. Computing the SAD for the whole win-
dow is made using 7 such instructions, one for each row. Once
the sub-pixel accuracy correlation is found, the only step

Figure 11. Sub-pixel accuracy interpolation

remaining is to do the actual 3D reconstruction.

IV. 3D RECONSTRUCTION

 In this section, we describe the actual 3D reconstruction al-
gorithm. The algorithm is based on the fact that the 3D point
that generated 2 correlated projection points must be located at
the intersection of their projection rays [3]. Unfortunately, the
projection rays do not usually intersect, because of the recon-
struction error, i.e. the linear system of 4 equations, having the
coordinates of the reconstructed point as unknowns is usually
incompatible. There are many methods for dealing with this
incompatibility. The most widely used methods are solving the
system using least squares [1] and finding the middle-point of
the common perpendicular of the 2 projection rays [2]. As
computational complexity is the same in both methods, we
chose the second method, because it has a more obvious geo-
metrical interpretation (Fig 12). For oblique edge points, a fur-
ther test is made, the reconstructed point is projected into the
spare (bottom) camera image and its correlation SAD is evalu-
ated. If the value is not small enough, the reconstructed point is
discarded.
 Once reconstructed, the points are passed to further process-
ing modules, like grouping and tracking. However, these proc-
essing modules are not the scope of this article, and will not be
discussed here.
 We must say few words about the implementation of all the
feature extraction, correlation and 3D reconstruction modules.
Because the system is very complex, we made a C++, object-
based implementation. For each processing class where assem-
bly language optimizations were possible, we also developed a
strict C++ reference implementation, which is easier to under-
stand. Wherever possible, test classes where developed, to ease
the error identification and to allow easier re-factoring of the
system.

Figure 12. Point M is found at the middle of the common perpendicular of the

2 projection rays

V. EXPERIMENTAL RESULTS

 We used 2 types of test images for our algorithm. One type
were real images, the other were synthetic images, generated
with the aid of a tool we developed. Using both type of images,
reconstruction errors along the z-axis were measured (using
measured controlled points for real images and rendering depth
for synthetic images). The average reconstruction error is 3%
along the z-axis. The reconstruction speed, for 752x576 pixels
images was 20 frames/second on a 2.6GHz P4 system.

Figure 13. Corridor image with control points

Figure 14. Reconstructed corridor points, viewed from the top. In the left im-
age trinocular reconstruction was used, in the right only binocular reconstruc-
tion was used. The horizontal edges are clearly visible in the trinocular recon-

struction, but not visible in the binocular reconstruction

Figure 15. Synthetic image. The true depth at each point was generated in order

to be compared with the depth obtained using the reconstruction algorithm

Figure 16. Reconstructed points from the synthetic image in figure 15, side

view

Figure 17. Reconstructed points from the synthetic image in figure 15, top

view. One can see the lane markings, the trees and the car backs.

VI CONCLUSION AND FUTURE WORK

 We developed a high precision, real-time 3D environment
reconstruction system, using trinocular vision. We demon-
strated the advantages of using trinocular stereo as opposed to
the classic binocular stereo. We used non-rectified images and
sub-pixel correlation accuracy in order to improve precision.
We used MMX and SSE2 technologies to improve speed.
 Future work on the system will be concentrated on multi-
scale resolution correlation, using the motion field for correla-
tion prediction and validation and reconstructing more points
(dense stereo). Also, other trinocular system configurations
should be tested [9][10], in order to evaluate their potential
advantages.

REFERENCES

[1] E. Trucco, A. Verri , Introductory Techniques for 3-D Computer Vision,

Prentice Hall, 1998
[2] D. A. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Pren-

tice Hall, 2002
[3] L. Shapiro, G. Stockman, Computer Vision, Prentice Hall, 2001
[4] S. M. Boersma, F. A. van den Heuvel, A. F. Cohen, R. E. M. Scholtens,

Photogrammetric Wound Measurement with a Three-Camera Vision Sys-
tem, IAPRS, Vol. XXXIII, Amsterdam, 2000

[5] D. Murray J. Little,�Using real-time stereo vision for mobile robot navi-
gation, Workshop on Perception for Mobile Agents, CVPR'98

[6] Intel Architecture Software Developer’s Manual, vol. 1 & 2
[7] IA32 Intel Architecture Optimization
[8] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer Graph-

ics: Principal and Practice in C, 2nd Edition, Addison-Wesley 1995
[9] J. Mulligan, K. Daniilidis, Trinocular Stereo for Non Parallel Configu-

rations, Proc. International Conference on Pattern Recognition
(ICPR’00), Vol 1, pp 567-570, 2000.

[10] J. Migdal, Depth Peception Depth Perception Using a Trinocluar Cam-
era Setup and Sub-Pixel Image Correlation Algorithm, Technical report,
Mitsubishi Electric Research Laboratories Cambridge Research Center,
May 19, 2000.

[11] J. Canny, A Computational Approach to Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, June 1986, pp.
679-698

