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Abstract 

This paper presents a camera calibration method for 

far-range stereo-vision used for driving environment 

perception on highways. For a high accuracy 

stereovision system the most critical camera 

parameters are the relative extrinsic parameters 

which are describing the geometry of the stereo-rig. 

Experiments proved that even a few seconds drift of 

the relative camera angles can lead to disastrous 

consequences in the whole stereo-vision process: 

incorrect epipolar lines and consequently lack of 

reconstructed 3D points. Therefore we propose an 

off-line method able to give a very accurate 

estimation of these parameters and on-line methods 

for monitoring their stability in time taking into 

account the real-world automotive conditions, which 

can introduce drifts to the initial parameters due 

vibrations, temperature variations etc. 

1 Introduction 

Optical sensors, such as visible-light cameras, are 

usually referred to as passive sensors because they 

acquire data in a non-intrusive way. They are low 

cost sensors but do not perform direct measurements 

as the active ones. The measurement is done 

indirectly from the 2D image and this process could 

be time consuming and its accuracy dependents on 

the vision sensor setup. However, the use of a high 

resolution, high accuracy stereovision algorithm 

provides accurate results in 3D estimation while 

delivering a larger amount of data, thus making 

some obstacle detection tasks as grouping and 

tracking easier, and allowing a subsequent 

classification of the obstacles. Moreover, the lane 

detection is a key problem in any driving assistance 

system, and one of the privileges of computer vision. 

The measuring capabilities of vision sensors with 

monocular cameras are reduced because are relying 

on some prior knowledge of the scene as flat road 

assumption or constant pitch angle, which cannot be 

met in real scenarios. With stereo-vision systems the 

full 3D reconstruction of the scene is possible, but a 

high accuracy of the camera parameters is required.  

The calibration of a stereovision system deals with 

the estimation of the following parameters: 

- Internal parameters of the stereo-rig: intrinsic 

parameters (focal length and the principal point 

position) and relative position and orientation of 

the two cameras (relative extrinsic parameters). 

- Absolute extrinsic parameters of the stereo-rig: 

position and orientation of the stereo-rig (usually 

the left camera coordinate system) relative to a 

world coordinate system in which the 

measurements are reported. 

The quality of the internal parameters is influencing 

the accuracy of the essential and fundamental matrix 

and consequently the positions of the epipolar lines 

[1] which are essential in the stereo correlation 

process. Their wrong estimation can lead to lack of 

correlated points or false correlations with disastrous 

consequences for the whole stereo reconstruction 

process. The quality of the absolute extrinsic 

parameters is linked to the position of the 

reconstructed 3D points in the world coordinate 

system.  

Regarding the intrinsic parameters calibration there 

are many general purpose methods found in the 

literature [2]-[5]. Most of them are estimating the 

parameters by minimizing the projection error of a 

set of control points from a calibration object/pattern 

with known structure against their detected 2D 
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image positions. Multiple views of the calibration 

object are taken and the accuracy of the results 

usually increases with the total number of control 

points. A special note must be mentioned for the 

Bouguet method implemented in the Caltech 

Camera Calibration Toolbox [5], which was 

intensively tested and used in our experiments for 

the estimation of the intrinsic parameters.  

Regarding the extrinsic parameters estimation, the 

principle is the same: minimizing the projection 

error of some 3D control points with known 

positions in the world coordinate system 

(measurement coordinate system). General purpose 

methods [5], [6] are using the same calibration 

object as for the intrinsic parameters estimation. 

These approaches can be satisfactory for monocular 

or near range indoor applications, but are completely 

unsuited for far range stereo-vision (because in the 

estimation process the error was minimized for a 

small calibration object and for near distances). 

Therefore, using a calibration scene with sizes 

comparable with the working range of the stereo 

reconstruction application has been proved a reliable 

solution. Such methods [8], [9] are using as control 

points, painted markers on a flat surface of a few 

meters or tens of meters in length.  

In this paper we present a method for estimating the 

extrinsic camera parameters suited for far range and 

high accuracy stereo-vision. As control points, ‘X’-

shaped targets are placed vertically in a flat 

calibration scene, up to 40 m in depth. The 3D 

coordinates of the targets’ are measured in the world 

coordinate system. Each camera is calibrated 

individually (so the method can be applied also for 

mono systems). The 2D image projections of the 

targets’ central points are detected automatically and 

the projection error of their 3D coordinates are 

minimized against the position and orientation of the 

camera in the world coordinate system using the 

Gauss-Newton method. The obtained results proved 

to be very accurate regarding both the absolute 

extrinsic parameters of each camera individually and 

especially for the relative extrinsic parameters, 

allowing a very accurate stereo reconstruction 

procedure.  Furthermore, two original methods for 

on-line self checking of the stereo system geometry 

are proposed. These methods are allowing 

monitoring the stability of the internal parameters in 

time taking into account the real-world automotive 

conditions, which can introduce drifts to the initial 

parameters due vibrations or temperature variations. 

2 Camera Model 

The intrinsic parameters of each camera are the 

principal point’s position (xc,yc) [pixels], the focal 

length of the camera  f [pixels] and the first two 

radial (k1, k2) and tangential (p1, p2) distortion 

coefficients [4], [5]. The intrinsic parameters are 

assumed to be correctly computed, using the 

algorithm presented in [5].  

The stereovision sensor consists in two cameras 

mounted on a rigid frame (stereo-rig). The position 

and orientation of the cameras’ are completely 

determined by the absolute extrinsic parameters: the 

translation vectors TL and TR (1), and the rotation 

matrices RL and RR (2) relative to the world 

coordinate system which coincides with the ego-car 

coordinate system. The car/world coordinate system 

has its origin on the ground in the front of the car, 

and its Z axis points in our direction of travel (fig. 

1). The relative extrinsic parameters can be 

computed from the absolute ones (3).  
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Fig. 1. The cameras’ and the car coordinate systems. 
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3 Extrinsic Parameters Calibration 

3.1 The calibration scenario 

A calibration scenario on a flat surface of 30–40 m 

depth and 5–10 m width was chosen (fig.4). As 

control points a set of ‘X’-shaped targets were 

placed vertically in a calibration scene,  

There are some aspects influencing the quality of the 

obtained extrinsic parameters which were taken into 

account when setting up this calibration scenario: 

- the 3D control points should be uniformly spread 

over the calibration field; 

- their 3D coordinates should be measured as 

accurate as possible; 

- the projection of the control points onto the image 

plane should be easily detected with sub-pixel 

accuracy. 

The ‘X’-shape of the targets was chosen due to some 

major advantages in the automated detection 

process:  

- it has a low rate of false targets detections because 

most of the structures in our 3D scenarios are ‘+’-

shaped structures (due to predominance of 

horizontal and vertical features) while the ‘X’-

shape is based on oblique features;  

- the center of the target can be easily computed;  

- the centers of the vertical ‘X’-shaped targets are 

more easier to detect than lines or other markers 

painted on the road [8[, [9], which are poorly 

visible at long distances due to perspective 

projection effects, especially when the cameras are 

mounted at low pitch angles as in vehicles. 

3.2 Correction of the lens distortion effects 

First, a correction algorithm is applied to remove the 

lens distortion effects encoded in the four distortion 

coefficients using the distortion model of the 

cameras [3], [5]. This is a compulsory step science 

targets which are far from the image center can 

suffer a distortion drift up to a few pixels, depending 

on the quality and geometry of the lenses. The 

destination un-distorted images are obtained by 

remapping the original images to the undistorted 

coordinates using bilinear interpolation. The 

correction of the lens distortion simplifies the 

projection model of the 3D points onto the image 

plane used in the extrinsic parameters estimation. 

The lens distortion correction is applied also on 

every processed image in the stereo-reconstruction 

application. 

3.3 Automatic detection of the targets 2D image 

projections 

Detection of the targets is performed in 3 stages 

using multiple validation constraints in order to 

eliminate false positives which can occur in some 

scenes with non-uniform background. 

1. First, the grayscale image is segmented using an 

automated global threshold detection method [7] 

computed in the region of interest (the smallest 

rectangle delimiting the image area occupied by 

the ‘X’-shaped targets). Then concavities of the 

black areas are searched (fig. 2) and groups of 

four concavities (left/right/upper/lower) are 

formed and marked based on vicinity criteria. 

Fig. 2. Concavities detection: zoomed area – upper/lower/ 

left/right concavities; complete image – centers of 

detected groups of 4-concavities are marked. 

2. Validation by searching oblique edge points 

obtained with the Roberts-cross operator in the 

neighborhoods of the previously found 

concavities. The areas occupied by oblique edge 

points around each concavity is marked (fig. 3) 

and used in the next validation stage. 

Fig. 3. Validation by oblique edges. 
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3. A final validation step is performed by applying a 

classical pattern-matching method with 

synthetically generated ‘X’-shaped patterns of 

different sizes in the surrounding region of the 

already found targets. The final results of the 

targets detection are shown in figure 4. 

Fig. 4. Calibration scenario - the 3D control points are 

situated in the centers of the ‘X’-shaped targets. 

To detect the sub-pixel position of the targets’ 

center, the image area bounding the current target is 

zoomed-in using bi-cubic interpolation (fig. 5-left). 

To detect the target’s center position along the X

axis, the sum of the pixel values along each column 

is computed (fig. 5-center). The maximum of these 

sums is considered (in the center of the target the 

number of light pixels along the row and the column 

is maximal). To minimize the influence of noise and 

image discrete nature, instead of considering exactly 

the position of the maximum, we take the mid point 

of the interval having values above 90% from the 

maximum. The computed position is now mapped 

back by downscaling and translation to the original 

image coordinates. To detect the target’s center 

position along the Y axis the procedure is similar, 

except that it’s applied along the vertical direction 

(fig. 5-right). 

    
Fig. 5. Zoomed ‘X-shape’ image (left); The sum of 

intensities along the columns for each row (center); The 

sum of intensities along the rows for each column (right). 

3.4 Estimation of the extrinsic parameters 

Considering a known 3D point PA(XA, YA, ZA) and 

its image projection p(xi, yi), due to perspective 

projection [1], the following relations are available: 
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For each known 3D point there are two equations 

involving the 12 unknowns. The 9 unknowns 

representing the rotation matrix have only 3 freedom 

degrees (represented by the 3D angles of rotation) 

Thus it is necessary to add several constraints that 

model the dependencies between the rotation matrix 

coefficients. These constraints are obtained easily 

considering the fact that the rotation matrix is 

orthogonal [1], and therefore six equations can be 

supplementary added: 
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By using a number n>=3 of 3D control points, from 

(4) and (5) a non-linear system of 2n+6 equations is 

built (7), where the first 2n equations are obtained 

by applying (5) for each control point, and the last 6 

equations are the constraints defined in (5): 

( ) 0=uF    (6) 

where u is a vector of the 12 unknowns (Xcw, Ycw, 

Zcw, rij), for i, j = 1,2,3.

To solve this system, the Gauss-Newton iterative 

method was used. This method starts from an initial 

random solution (the constraint that the initial 

solution must be close to the real one is not 

required), and converges applying iteratively 

correction steps. As initial solution the translation 

vector was set to the null vector and the rotation 

matrix to the identity matrix. Suppose that, after a 

number of correction steps, the current solution is ui

and, by applying another correction step, the new 
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solution is ui+1 = ui + du, than the residual du is 

obtained by solving the system: 

FJ =⋅ du     (7) 

where J is the Jacobian matrix associated to 

equation system F(u) = 0.  

To solve the over-determined system (7) a least-

squares method was used (8). The decision to stop 

the correction process after a number of iterations is 

taken when the norm of the residual du is smaller 

than a threshold. 
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4 On-line Self-Checking of the Stereo-Rig 

Internal Parameters  

Real-world automotive conditions, can lead to drifts 

to the initial camera parameters due vibrations, 

temperature variations etc. Therefore some methods 

used to check the geometry of the stereo-rig during 

exploitation would be very useful. The checking 

should be applied from time to time and should not 

require a specific calibration scene. In the following  

two such  methods which can be used on-line during 

the exploitation of the stereovision sensor are 

proposed. 

4.1 Self-checking using infinity points 

It is very likely that on highway or country roads to 

have a visible horizon line. Usually the mid points of 

the detected horizon line are at far distance (a few 

hundred meters) and can be considered at infinity in 

comparison with the depth range of the stereovision 

sensor (<100 m). Thus, these points can be 

considered in a plane situated at infinity. Let 

consider the disparity equation for points situated at 

infinity: 

LLrelRLR mARAmHm ⋅⋅⋅=⋅=
−

∞

1  (9) 

The above equation says that for the left image 

projection (mL) of a point at infinity, its 

correspondent (mR) in the right view can be obtained 

using the homography matrix of the plane at infinity 

H∞, which depends only on the internal parameters 

of the stereo rig: the intrinsic parameters of the two 

cameras encoded in the two intrinsic matrices AL

and AR [3] and the relative rotation between the two 

cameras Rrel.

By setting the homogeneous coordinates of the point 

mL to 0 in (9) we define the expected disparity of 

infinity points as: 
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The method computes the expected disparity for the 

camera parameters in use. When we want to check if 

the stereo-system’s geometrical configuration fulfils 

the initial values we compute the average disparity 

for a set of horizon points: davg (if a valid horizon 

line is available): 
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Then, if the difference between the computed 

average disparity of the horizon points and the 

expected disparity is below a threshold, we can say 

that the geometrical configuration is unchanged. If it 

is above the threshold then a geometrical change in 

the parameters of AL, AR or Rrel has occurred (12). 

The proper value of the threshold value is 

determined experimentally. 


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   (12)

The horizon points are matched between the left and 

right horizon line segments detected as the lower 

borders of the sky regions. The classical way to find 

the right image correspondents of left image features 

is the stereo-matching using epipolar geometry 

constraints [1]. But in our case this approach is not 

applicable because infinity points have “zero” 

disparity and we assume that the camera geometry 

might be changed (and therefore epipolar constraints 
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are not valid any more). Therefore a set of horizon 

points are selected from the left image and their 

correspondents in the right are found using the 

following algorithm: 

1. Features selection in both left and right horizon 

lines segments which are local extreme points of 

the horizon line segments (local minima or 

maxima in the vertical direction).  

2. For every feature from the left image a window 

based matching is performed on the set of right 

image features and the feature pair of the best 

match is selected. 

4.2 Self-checking using epipolar line constraints 

A measure of the stereo system’s wrong geometry 

can be the average vertical drift from the true 

position of the computed epipolar line in the right 

image. Considering the theory of the fundamental 

matrix [1], it easy to deduce that the epipolar lines 

will have a vertical drift when small modifications 

are present in the focal lengths, the vertical 

coordinate of the principal points (1-2 pixels), the 

relative pitch angle of the two cameras (0.02-0.05 

degrees), or large modifications of the other 

parameters. 

Usually, when a drift appears, the effect on 

reconstruction is a decrease in the number of 3D 

points. Therefore the drift can be checked by setting 

different values of drift in between -2...+2 pixels 

with a step of 0.25,  and testing the variation of the 

number of 3D points (as in fig. 6). The algorithm for 

computing the epipolar drift is described bellow: 

1. For each drift value, the histogram of the number 

of the reconstructed 3D points is computed (only 

edge points were considered). 

2. The maximum value of the histogram is 

determined. 

3. Because it is not a strong maximum, a region is 

taken around the maximum for values higher then 

95%. 

4. The middle of the interval is considered as the 

correct position for the correspondent drift.

For a good calibrated system the drift should have 

values between -1 … +1 pixel. Outside this range 

the errors of the stereo correlation process are 

dramatically increasing. Considering the 

measurements’ error range (witch is proportional 

with the matching accuracy  ≈ 1/4 pixels) a 

maximum allowed drift range of -0.7 ... +0.7 is 

considered. If a small de-calibration appears, than 

the drift will have higher values (more than 1 pixel 

absolute values). 

Fig. 6. Detection of the epipolar drift 

5 Results 

The calibration method was tested in a large number 

of experiments with various types of stereovision 

systems: from individual high quality mega-pixel 

CCD cameras mounted on a rigid rig to integrated 

stereo-heads with CMOS sensors.  

The intrinsic parameters of each camera were 

calibrated individually. The parameters were 

estimated using the Bouguet’s algorithm [5] by 

minimizing the projection errors of a set of control 

points placed on a coplanar calibration object 

viewed from different positions. Accuracy of the 

obtained parameters was depending on several 

factors: number of views, number of control points 

on each view, size of the calibration object, coverage 

of the views by the calibration object, accuracy and 

planarity of the calibration object etc. By using the 

proper calibration methodology, the obtained 

uncertainties of the intrinsic parameters were below 

one pixel. Regarding the stability of the intrinsic 

parameters in time the parameters remained 

unchanged during in-vehicle exploitation of the 

stereo system in a period of over 2 years.

The extrinsic parameters of each camera were 

calibrated using the above presented method. The 

accuracy of the automated targets’ center detection 
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method was compared with the positions of hand 

extracted points (using a zoomed window applied on 

the targets). The obtained average error was bellow 

0.1 pixels. The uncertainties for the extrinsic 

parameters roughly estimated from the residual of 

the Gauss-Newton minimization method were 

usually below 10
-9

 for the terms of T and 10
-11

 for 

the terms of R.

The overall accuracy of the estimated parameters 

was assessed offline, by measuring the 

reconstruction errors of ‘X’-shaped targets, placed in 

known 3D coordinates (similar to fig. 4). The targets 

centers were computed with sub-pixel accuracy 

using the above described algorithm. In such a setup, 

the only errors’ sources were the sub-pixel detection 

errors of the targets’ center (about 0.1 pixels 

accuracy) and the targets’ 3D measuring errors. The 

error plots of the reconstructed coordinates for one 

of the calibration experiments are shown in figure 7.  

The lateral offset errors were below 4 cm, the height 

errors were below 1 cm and the depth errors were 

below 22 cm (below 5% relative errors).  

a. X errors 

b. Y errors 

c. Z errors 

Fig. 7. Absolute errors of the reconstructed control points 

expressed in [mm] vs. the depth of the control point [m]. 

The same scenario was used to validate the self-

checking method based on epipolar line constraints. 

From the sub-pixel left-right image coordinates of 

the detected targets’ centers an average vertical 

epipolar drift was computed and compared with the 

drift measured with the on-line method. The errors 

were below 0.1 … 0.2 pixels. 

Regarding the self-checking method of the camera 

geometry by using the infinity points’ constraints, 

for the proper estimation of the error threshold (12), 

the following study was made: a set of good 

calibration parameters was taken as reference and 

the expected infinity disparity d∞ for the initial set of 

parameters computed. Then the value of each 

internal parameter was modified around the initial 

value to simulate changes in the stereo system 

geometry (table I). 

TABLE I 

SIMULATED DISPARITY ERRORS: δd

Parameter Simulated drift δd [pixels]

Principal point 1 pixel 1 

Focal length 10 pixels 0.2 

Rotation angle 0.1 deg 2 

By assuming that we have the following 

uncertainties in the estimation of system parameters: 

1-2 pixels for principal point and focal length, 0.01 

[deg] for the relative camera angles and 1 pixel in 

the detection of horizon points’ positions, we can 

consider the threshold value of δd as the sum of the 

consequences of all these uncertainties obtaining an 

approximate value of [2, 2]
T
 [pixels].  

The self-checking method using infinity points’ 

constraints was tested on different scenarios. If a 

proper horizon line was detected (beyond 100m, 

with enough local maxima) the method proved to be 

reliable providing for a good calibrated system an 

average disparity of infinity points very close to the 

expected one. 

The calibration parameters were tested in a 

stereovision based lane and obstacle detection 

application for traffic environment perception in 

highway scenarios [11-13]. The system  was able do 
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detect and track objects in a range up to 100m with a 

depth errors up to 5%. For comparison, the results of 

the extrinsic parameters calibration method from [5] 

were tested but the current approach has been 

proved far more accurate and reliable.

6 Conclusions 

A dedicated calibration method for far range stereo-

vision was developed. The method performs the 

estimation of the camera’s absolute extrinsic 

parameters with high accuracy. Consequently, very 

accurate relative extrinsic parameters of the 

cameras’ are determined, allowing a precise 

estimation of the epipolar lines (≈ 0 pixel drift) with 

benefic effects for the whole stereo reconstruction. 

Therefore the method is suited for the calibration of 

any stereo-vision system used for far range 3D 

reconstruction as outdoor robot vision applications 

or vision based driving assistance systems. 

Also a set of original methods for on-line self-

checking of the stereo rig internal parameters was 

proposed. These methods are allowing the on-line 

monitoring of the stability of the internal parameters 

during time taking into account the real-world 

automotive conditions, which can introduce drifts to 

the initial parameters. 

Further work will be focused on developing an auto-

calibration method of the stereo rig absolute 

extrinsic parameters, by knowing the internal 

parameters calibrated off-line and taking the 

advantages of available stereo reconstruction of road 

features in the stereo-rig coordinate system. 
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